„Hämoglobin“ – Versionsunterschied

[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
KLBot2 (Diskussion | Beiträge)
K Bot: 69 Interwiki-Link(s) nach Wikidata (d:Q43041) migriert
→‎Hämoglobinbestimmung: doppelter Einzelnachweis im Satz
 
(239 dazwischenliegende Versionen von mehr als 100 Benutzern, die nicht angezeigt werden)
Zeile 1: Zeile 1:
{{Infobox Protein
{{Infobox Protein
| Name = Hämoglobin α-Untereinheit
| Name = Hämoglobin α-Untereinheit
| Bild = HbA_1GZX.jpg
| Bild = 1GZX Haemoglobin.png
| Bild_legende = Hb-Dimer: vorne α-Untereinheit als Cartoon-Modell mit Häm (rot, als VDW-Modell), hinten β-Untereinheit als Stäbchen, nach {{PDB|1GZX}}
| Bild_legende = Das Hämoglobin A<sub>1</sub> erwachsener Menschen besteht aus 2 α-Ketten (rot) und 2 β-Ketten (blau) mit 4 [[Häme (Stoffgruppe)|Häm]]-Gruppen (grün), die je ein [[Sauerstoff|O]]<sub>2</sub>-Molekül binden können (Modell nach {{PDB|1GZX}})
| PDB = [http://www.uniprot.org/uniprot/P69905 UniProt-Eintrag]
| PDB = [https://www.uniprot.org/uniprotkb/P69905 UniProt-Eintrag]
| Groesse = 16 [[Atomare Masseneinheit|kDa]], 141 [[Aminosäuren]] (je Untereinheit)
| Groesse = 16 [[Atomare Masseneinheit|kDa]] je Untereinheit; α-Kette 141, β-Kette 146 [[Aminosäuren]]
| Kofaktor = [[Häm]]
| Kofaktor = [[Häm]]
| Precursor =
| Precursor =
| Struktur =
| Struktur =
| Isoformen =
| Isoformen =
| HGNCid =
| HGNCid =
| Symbol = {{HGNC||HBA1}}, {{HGNC||HBA2}}
| Symbol = {{HGNC||HBA1}}, {{HGNC||HBA2}}
| AltSymbols =
| AltSymbols =
| OMIM = 141800
| OMIM = 141800
| UniProt = P69905
| UniProt = P69905
| MGIid =
| MGIid =
| CAS =
| CAS =
| CASergänzend =
| CASergänzend =
| ATC-Code = <!-- {{ATC|X99|XX99}} -->
| ATC-Code = <!-- {{ATC|X99|XX99}} -->
| DrugBank =
| DrugBank =
| Wirkstoffklasse =
| Wirkstoffklasse =
| EC-Nummer =
| Handelsnamen = <!-- ® -->
| Kategorie =
| Verschreibungspflicht =
| EC-Nummer =
| Peptidase_fam =
| Kategorie =
| Reaktionsart =
| Peptidase_fam =
| Substrat =
| Reaktionsart =
| Produkte =
| Homolog_db = HOVERGEN
| Substrat =
| Homolog_fam = Beta-2 Globin
| Produkte =
| Taxon = [[Wirbeltiere]]
| Homolog_db = HOVERGEN
| Taxon_Ausnahme =
| Homolog_fam = Beta-2 Globin
| Orthologe =
| Taxon = [[Wirbeltiere]]
| Taxon_Ausnahme =
| Orthologe =
}}
}}
{{Infobox Protein
{{Infobox Protein
| Name = Hämoglobin β-Untereinheit
| Name = Hämoglobin β-Untereinheit
| Bild = HbB-pocket 1GZX.png
| Bild = HbB-pocket 1GZX.png
| Bild_legende = Kugelmodell der Häm-Tasche der Hämoglobin β-Untereinheit mit Häm, Eisen (grün) und Disauerstoff, nach {{PDB|1GZX}}
| Bild_legende = Kugelmodell der Häm-Tasche der Hämoglobin β-Untereinheit mit Häm, Eisen (grün) und Disauerstoff, nach {{PDB|1GZX}}
| PDB = [http://www.uniprot.org/uniprot/P68871 UniProt-Eintrag]
| PDB = [https://www.uniprot.org/uniprotkb/P68871 UniProt-Eintrag]
| Groesse = 146 [[Aminosäuren]]
| Groesse = 146 [[Aminosäuren]]
| Kofaktor = [[Häm]]
| Kofaktor = [[Häm]]
| Precursor =
| Precursor =
| Struktur =
| Struktur =
| Isoformen =
| Isoformen =
| HGNCid = 4827
| HGNCid = 4827
| Symbol = HBB
| Symbol = HBB
| AltSymbols =
| AltSymbols =
| OMIM = 141900
| OMIM = 141900
| UniProt = P68871
| UniProt = P68871
| MGIid = 96021
| MGIid = 96021
| CAS =
| CAS =
| CASergänzend =
| CASergänzend =
| ATC-Code = <!-- {{ATC|X99|XX99}} -->
| ATC-Code = <!-- {{ATC|X99|XX99}} -->
| DrugBank =
| DrugBank =
| Wirkstoffklasse =
| Wirkstoffklasse =
| EC-Nummer =
| Handelsnamen = <!-- ® -->
| Kategorie =
| Verschreibungspflicht =
| EC-Nummer =
| Peptidase_fam =
| Kategorie =
| Reaktionsart =
| Peptidase_fam =
| Substrat =
| Reaktionsart =
| Produkte =
| Homolog_db = HOVERGEN
| Substrat =
| Homolog_fam = Beta-2 Globin
| Produkte =
| Taxon = [[Wirbeltiere]]
| Homolog_db = HOVERGEN
| Taxon_Ausnahme =
| Homolog_fam = Beta-2 Globin
| Orthologe =
| Taxon = [[Wirbeltiere]]
| Taxon_Ausnahme =
| Orthologe =
}}
}}
{{Infobox GO-Terminus
{{Infobox GO-Terminus
Zeile 74: Zeile 70:
| Eltern = [[Zytosol]]
| Eltern = [[Zytosol]]
}}
}}

'''Hämoglobine''' (von [[Griechische Sprache|griech.]] αἷμα ''haíma'' ‚Blut‘ und [[Lateinische Sprache|lat.]] ''globus'' ‚Kugel‘) ('''Hb''') sind [[eisen]]haltige, [[sauerstoff]]transportierende [[Protein]]e, die in den [[Erythrozyt|roten Blutkörperchen]] und ihren Varianten von [[Wirbeltiere]]n, einiger [[Ringelwürmer|Anneliden]], [[Weichtiere|Mollusken]] sowie weniger [[Krebstiere|Crustaceen]] und [[Insekten]] gefunden werden. Sie nehmen den Sauerstoff in der Lunge bzw. den Kiemen auf und verteilen ihn im Körper. Die Bindung des Sauerstoffs erfolgt an einem Eisen[[Komplex (Chemie)|komplex]] des Protoporphyrins IX ([[Häm]]). Wirbeltier-Hämoglobine sind [[Proteinkomplex]]e aus vier [[Quartärstruktur|Untereinheiten]] ([[Hämoglobin, alpha 1|2 α]], [[Beta Globin|2 β]]), die jeweils eine Häm-Gruppe, die in ein [[Globine|Globin]] eingebettet ist, enthalten. Die Häm-Gruppe ist außerdem für die rote Farbe des Hämoglobins verantwortlich.
'''Hämoglobin''' (von {{grcS|αἷμα|haíma}}, „Blut“, und {{laS|globus}}, „Klumpen, Ballen“<!-- „Kugel“ ist auch richtig, passt hier aber nicht -->), Abkürzung '''Hb''', ist der [[eisen]]haltige [[Proteinkomplex]], der als [[Sauerstofftransporter|Blutfarbstoff]] in den [[Erythrozyt|roten Blutkörperchen]] von Wirbeltieren enthalten ist, [[Sauerstoff]] bindet und diesen so im [[Blutkreislauf]] transportiert.

Das Hämoglobin von Säugetieren ist ein [[Tetramer]], es besteht aus vier [[Globine]]n als [[Quartärstruktur|Untereinheiten]]. Beim erwachsenen Menschen sind dies je zwei [[α-Globin|Hb α]] und [[β-Globin|Hb β]] im Hämoglobin A (Hb A<sub>0</sub>), der häufigsten Form. Die vier den Komplex bildenden [[Protein]]e sind [[Polypeptid|Aminosäureketten]] (α-Kette 141 [[Aminosäuren|AS]]; β-Kette 146 AS) in der für Globine typischen Faltung mit jeweils einer Tasche, in der ein Eisen-II-[[Komplex (Chemie)|Komplex]], das [[Häm]], gebunden ist. Dessen Eisenion vermag ein Sauerstoffmolekül zu binden. Dabei ändert sich die Farbe des Häms von dunkel- zu hellrot. Die Bindungsstärke hängt empfindlich von der [[Proteinstruktur|Konformation]] der Proteinumgebung des Häms ab. Wechselwirkungen zwischen den vier Globinen begünstigen die beiden extremen Zustände, in denen der Gesamtkomplex entweder mit vier Molekülen Sauerstoff gesättigt ist (in der [[Lunge]] bzw. den [[Kiemen]]) oder allen Sauerstoff abgegeben hat. Wechselwirkungen mit anderen Molekülen unterstützen die Beladung wie die Entladung.

Zum Vorkommen von Hämoglobin und ähnlicher Globine im Tierreich siehe [[Sauerstofftransporter]].


== Geschichte ==
== Geschichte ==
Das Sauerstofftransportprotein Hämoglobin wurde 1840 von Hünefeld entdeckt.<ref name="Hunefeld">{{cite journal | author = Hünefeld F.L. | title = Die Chemismus in der thierischen Organization | publisher = Leipzig | year = 1840 }}</ref> 1851 beschrieb [[Otto Funke (Physiologe)|Otto Funke]] die Kristallisation von Hämoglobin durch Verdünnen von Tierblut mit Wasser, Ethanol oder Diethylether und anschließendem langsamen Verdampfen des Lösungsmittels aus der erhaltenen Proteinlösung („Funkesche Kristalle“).<ref name="url">{{cite web | url = http://virtualastronaut.tietronix.com/teacherportal/pdfs/ProteinCrystallography.pdf| format=PDF; 606&nbsp;kB | title = A NASA Recipe For Protein Crystallography | author = | authorlink = | coauthors = | date = | work = Educational Brief | publisher = National Aeronautics and Space Administration | pages = | language = | archiveurl = | archivedate = | quote = | accessdate = 2012-09-15}}</ref> Über die reversible Oxygenierung des Hämoglobins wurde 1866 erstmals von [[Felix Hoppe-Seyler]] berichtet.<ref name="Hoppe-Seyler">{{cite journal | author = Hoppe-Seyler F | title = Über die oxydation in lebendem blute | journal = Med-chem Untersuch Lab | volume = 1 | issue = | pages = 133–140 | year = 1866 | month = | pmid = | doi = | url = | issn = }}</ref> Von ihm stammt auch der Name Hämoglobin. Das Hämoglobin ist eines der bestuntersuchten Proteine, seine [[Proteinstruktur|Struktur]] wurde als eine der ersten überhaupt von [[Max Perutz]] ''et al'' 1959 mit Hilfe der [[Röntgenkristallographie]] ermittelt.<ref name=Perutz1960>{{Cite journal | last1 = Perutz | first1 = M.F. | last2 = Rossmann | first2 = M.G. | last3 = Cullis | first3 = A.F. | last4 = Muirhead | first4 = H. | last5 = Will | first5 = G. | last6 = North | first6 = A.C.T. | year = 1960 | title = Structure of H | journal = [[Nature]] | volume = 185 | issue = 4711 | pages = 416–422 | doi = 10.1038/185416a0 | url = | pmid = 18990801 }}</ref><ref name="pmid13734651">{{cite journal | author = Perutz MF | title = Structure of hemoglobin | journal = Brookhaven symposia in biology | volume = 13 | issue = | pages = 165–83 | year = 1960 | month = November | pmid = 13734651 | doi = | url = | issn =0068-2799 }}</ref><ref>{{cite journal |author=Perutz MF, Miurhead H, Cox JM, ''et al'' |title=Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution: (1) x-ray analysis |journal=Nature |volume=219 |issue=5149 |pages=29–32 |year=1968 |month=July |pmid=5659617 |doi=10.1038/219029a0 |url=}}</ref><ref>{{cite journal |author=Perutz MF, Muirhead H, Cox JM, Goaman LC |title=Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution: the atomic model |journal=Nature |volume=219 |issue=5150 |pages=131–9 |year=1968 |month=July |pmid=5659637 |doi= |url=}}</ref> Für diese Arbeiten bekam er 1962 zusammen mit [[John Kendrew]] den [[Nobelpreis]] für Chemie.
Das Sauerstofftransportprotein Hämoglobin wurde 1840 von [[Friedrich Ludwig Hünefeld]] entdeckt.<ref name="Hunefeld">Friedrich Ludwig Hünefeld: ''Der Chemismus in der thierischen Organisation.'' Brockhaus, 1840 ({{Google Buch|BuchID=wLELAQAAIAAJ}}).</ref> 1851 beschrieb [[Otto Funke (Mediziner)|Otto Funke]] die Kristallisation von Hämoglobin durch Verdünnen von Tierblut mit Wasser, Ethanol oder Diethylether und anschließendem langsamen Verdampfen des Lösungsmittels aus der erhaltenen Proteinlösung („Funkesche Kristalle“).<ref name="url">{{Internetquelle |url=http://teacherlink.ed.usu.edu/tlnasa/otherprint/briefs/ProteinCrystallography.pdf |titel=A NASA Recipe For Protein Crystallography |werk=Educational Brief |hrsg=National Aeronautics and Space Administration |format=PDF; 782&nbsp;kB |offline=ja |archiv-url=https://web.archive.org/web/20200922012742/http://teacherlink.ed.usu.edu/tlnasa/otherprint/briefs/ProteinCrystallography.pdf |archiv-datum=2020-09-22 |archiv-bot= |abruf=2016-02-02}}</ref> Über die reversible Oxygenierung des Hämoglobins wurde 1866 erstmals von [[Felix Hoppe-Seyler]] berichtet.<ref name="Hoppe-Seyler">{{Literatur |Autor=F. Hoppe-Seyler |Titel=Über die oxydation in lebendem blute |Sammelwerk=Med-chem Untersuch Lab |Band=1 |Nummer= |Datum=1866 |Seiten=133–140}}</ref><ref>Georg Hoppe-Seyler: {{Webarchiv |url=https://www.biospektrum.de/blatt/d_bs_pdf%26_id%3D1318105 |text=''Felix Hoppe-Seyler Arzt und Naturwissenschaftler'' |wayback=20200924182131 |archiv-bot=}}.</ref> Von ihm stammt auch der Name Hämoglobin.
Die Strukturformel des Häms (bzw. des korrespondierenden Hämins), also des eisenhaltigen Porphyrinkomplexes, formulierte bereits 1912 der deutsche Chemiker [[William Küster]],<ref>William Küster: ''Beiträge zur Kenntnis des Bilirubins und Hämins.'' In: ''[[Hoppe-Seylers Zeitschrift für Physiologische Chemie]]''. Nr. 82, 1912, S. 463 ff.</ref> der Nachweis der Richtigkeit dieser Strukturformel gelang dem Chemiker [[Hans Fischer (Chemiker)|Hans Fischer]] 1928 durch die vollständige Synthese des Hämins. 1930 wurde er dafür mit dem [[Nobelpreis für Chemie]] ausgezeichnet.
Das Hämoglobin ist eines der bestuntersuchten Proteine, seine [[Proteinstruktur|Struktur]] wurde als eine der ersten überhaupt von [[Max Perutz]] ''et al.'' 1959 mit Hilfe der [[Röntgenkristallographie]] ermittelt.<ref name="Perutz1960">{{Literatur |Autor=M. F. Perutz, M. G. Rossmann, A. F. Cullis, H. Muirhead, G. Will, A. C. T. North |Titel=Structure of H |Sammelwerk= [[Nature]] |Band=185 |Nummer=4711 |Datum=1960 |Seiten=416–422 |DOI=10.1038/185416a0 |PMID=18990801}}</ref><ref name="pmid13734651">{{Literatur |Autor=M. F. Perutz |Titel=Structure of hemoglobin |Sammelwerk=Brookhaven symposia in biology |Band=13 |Nummer= |Datum=1960-11 |ISSN=0068-2799 |Seiten=165–183 |PMID=13734651}}</ref><ref>{{Literatur |Autor=M. F. Perutz, H. Muirhead, J. M. Cox u. a. |Titel=Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution: (1) x-ray analysis |Sammelwerk=Nature |Band=219 |Nummer=5149 |Datum=1968-07 |Seiten=29–32 |DOI=10.1038/219029a0 |PMID=5659617}}</ref><ref>{{Literatur |Autor=M. F. Perutz, H. Muirhead, J. M. Cox, L. C. Goaman |Titel=Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution: the atomic model |Sammelwerk=Nature |Band=219 |Nummer=5150 |Datum=1968-07 |Seiten=131–139 |PMID=5659637}}</ref> Für diese Arbeiten bekam er 1962 zusammen mit [[John Kendrew]] den [[Nobelpreis]] für Chemie.


== Struktur ==
== Struktur ==
=== Nichtmodifizierte Grundstruktur ===


<gallery widths=250px heights=250px>
<gallery widths="250px" heights="250px">
Datei:1GZX Haemoglobin.png|Bändermodell (Untereinheit α und β, rot bzw. blau) von Hämoglobin&nbsp;A mit der prosthetischen Gruppe Häm (Stäbchenmodell, grün) nach PDB {{PDB2|1GZX}}
1GZX Haemoglobin.png|Bändermodell von Hämoglobin&nbsp;A (HbA) –<br />je zwei [[Α-Globin|Untereinheiten α]] und [[Β-Globin|β]] (rot bzw. blau) tragen jeweils ein [[Häm]] (Stäbchenmodell, grün) als [[prosthetische Gruppe]] (nach PDB {{PDB2|1GZX}})
Datei:Heme b.svg|Strukturformel des Häm&nbsp;''b''</gallery>
Heme b.svg|Strukturformel des Häm&nbsp;''b''
</gallery>


Säuger-Hämo[[globine]] bestehen aus vier [[Protein-Untereinheit|Untereinheiten]], je zwei vom α- und zwei vom β-Typ. In jede dieser Untereinheiten ist jeweils eine [[prosthetische Gruppe]], an der die Sauerstoffbindung stattfindet, eingebettet. Ein Hämoglobinkomplex-Molekül kann also vier Sauerstoffmoleküle binden. Die [[prosthetische Gruppe]] der sauerstofffreien Form ist ein [[Eisen]](II)-Komplex des Protoporphyrins IX, welches die vier äquatorialen Positionen des Eisenions besetzt. Das Eisenion befindet sich in einem ''[[Kristallfeld- und Ligandenfeldtheorie|high-spin]]''-Zustand und ist daher etwas zu groß, um in das Loch des Porphyrins zu passen. Es befindet sich also etwas unterhalb der Ringebene. Dieses Häm ''b'' ist über die axiale Position des Eisenions auf der Unterseite über einen proximalem [[Histidin]]rest an die Proteinmatrix gebunden. Die zweite axiale Position auf der Oberseite ist unbesetzt und steht für die Anbindung des Sauerstoffmoleküls zur Verfügung.
Säuger-Hämo[[globine]] bestehen aus vier [[Protein-Untereinheit|Untereinheiten]], je zwei vom α- und zwei vom β-Typ. In jeder dieser Untereinheiten ist jeweils eine [[prosthetische Gruppe]], an der die Sauerstoffbindung stattfindet, eingebettet. Ein Hämoglobinkomplex-Molekül kann also vier Sauerstoffmoleküle binden. Die prosthetische Gruppe der sauerstofffreien Form ist ein [[Eisen]](II)-Komplex des Protoporphyrins IX, welches die vier äquatorialen Positionen des Eisenions besetzt. Das Eisenion befindet sich in einem ''[[Kristallfeld- und Ligandenfeldtheorie|high-spin]]''-Zustand und ist daher etwas zu groß, um in das Loch des Porphyrins zu passen. Es befindet sich also etwas unterhalb der Ringebene. Dieses Häm ''b'' ist über die axiale Position des Eisenions auf der Unterseite über einen proximalen [[Histidin]]rest an die Proteinmatrix gebunden. Die zweite axiale Position auf der Oberseite ist unbesetzt und steht für die Anbindung des Sauerstoffmoleküls zur Verfügung.


=== Posttranslationale Modifikationen ===
=== Posttranslationale Modifikationen ===
Zeile 91: Zeile 96:
Neben verschiedenen seltenen Modifikationen einzelner Aminosäuren in den Hämoglobin-Untereinheiten des Menschen tritt häufig die [[Glykation]] beider Untereinheiten an speziellen Aminosäuren auf. Dies ist die Folge einer hohen Glucosekonzentration im Blut und kann daher in der Labordiagnostik verwendet werden, um den durchschnittlichen [[Blutzuckerspiegel]] der letzten Monate zu ermitteln.
Neben verschiedenen seltenen Modifikationen einzelner Aminosäuren in den Hämoglobin-Untereinheiten des Menschen tritt häufig die [[Glykation]] beider Untereinheiten an speziellen Aminosäuren auf. Dies ist die Folge einer hohen Glucosekonzentration im Blut und kann daher in der Labordiagnostik verwendet werden, um den durchschnittlichen [[Blutzuckerspiegel]] der letzten Monate zu ermitteln.


Bei der Glykation des Hämoglobins wird Glucose kovalent an [[Lysin]]-8, -17, -41, -62 der α-Untereinheit, sowie [[Valin]]-2, Lysin-9, -18, -67, -121 oder -145 der β-Untereinheit gebunden. Ist ein glykiertes β-Hämoglobin an Valin-2 modifiziert, und hat sich der Glucoserest über ein [[Aldimine|Aldimin]] und eine [[Amadori-Umlagerung]] zu einem stabilen [[Ketoamine|Ketoamin]] gewandelt, wird es als [[HbA1c]] bezeichnet.<ref>Canterbury Scientific: ''[http://www.canterburyscientific.com/products/technical-information/hba1c-and-glycated-hemoglobin/ HbA1c and Glycated Hemoglobin]''</ref><ref>{{UniProt|P69905}}, {{UniProt|P68871}}</ref>
Bei der Glykation des Hämoglobins wird Glucose kovalent an [[Lysin]]-8, -17, -41, -62 der α-Untereinheit, sowie [[Valin]]-2, Lysin-9, -18, -67, -121 oder -145 der β-Untereinheit gebunden. Ist ein glykiertes β-Hämoglobin an Valin-2 modifiziert und hat sich der Glucoserest über ein [[Aldimin]] und eine [[Amadori-Umlagerung]] zu einem stabilen ''Ketoamin''<!-- The aldimine intermediate is often referred to as labile HbA1c and the rate of its conversion to the _!_ ketoamine _!_ is some 60 times slower than the reverse dissociation with release of the glucose. --> gewandelt, wird es als [[HbA1c]] bezeichnet.<ref>''{{Webarchiv |url=http://www.canterburyscientific.com/products/technical-information/hba1c-and-glycated-hemoglobin/ |text=HbA1c and Glycated Hemoglobin |wayback=20120129113107}}'' Canterbury Scientific.</ref><ref>{{UniProt|P69905}}, {{UniProt|P68871}}</ref>

== Methämoglobin ==
[[Methämoglobin]] ist eine deaktivierte, nicht sauerstoffaffine Form des Hämoglobins, in dem das Eisenion sich in der Oxidationsstufe III statt II befindet. Das NADH-abhängige Enzym Methämoglobinreduktase (Diaphorase I) ist dafür verantwortlich, Methämoglobin wieder in Hämoglobin zu überführen.
In der Regel liegen beim Menschen zwei Prozent des Hämoglobins als Methämoglobin vor. Ein höherer Anteil ist entweder genetisch bedingt oder eine Folge einer Vergiftung. In Abhängigkeit vom Methämoglobinlevel kann dies zu Gesundheitsproblemen führen.


== Sauerstofftransport ==
== Sauerstofftransport ==
=== Leistungsfähigkeit ===
=== Leistungsfähigkeit ===


[[Datei:Haemo-BND-Kurve.SVG|miniatur|hochkant=2.0|Die Sauerstoffbindungskurve (auch Sättigungskurve) zeigt den charakteristischen sigmoidalen (S-förmigen) Verlauf. Man vergleiche den hiergegenüber hyperbolischen Verlauf der Sättigungskurve des Myoglobins.<ref>J. M. Berg, J. L. Tymoczko, L. Stryer: ''Biochemie.'' 6. Auflage. Spektrum Akademischer Verlag, Elsevier GmbH, München 2007; S. 208ff; ISBN 978-3-8274-1800-5</ref>]]
[[Datei:Haemo-BND-Kurve.SVG|mini|hochkant=2|Die Sauerstoffbindungskurve (auch Sättigungskurve) zeigt den charakteristischen sigmoidalen (S-förmigen) Verlauf. Man vergleiche den hiergegenüber hyperbolischen Verlauf der Sättigungskurve des Myoglobins.<ref>J. M. Berg, J. L. Tymoczko, L. Stryer: ''Biochemie.'' 6. Auflage. Spektrum Akademischer Verlag, München 2007, ISBN 978-3-8274-1800-5, S. 208ff.</ref>]]
Hämoglobin ist ein [[globuläres Protein]] mit sehr guter Löslichkeit in Wasser (Löslichkeit bis zu 5&nbsp;[[Mol|mmol]]/l Hämoglobin (34 %)). 1&nbsp;g Hb kann [[in vitro]] 1,389&nbsp;ml Sauerstoff binden, [[in vivo]] jedoch nur 1,34&nbsp;ml ([[Hüfner-Zahl|Hüfnersche Zahl]]), somit können 100&nbsp;ml Blut, die etwa 15&nbsp;g Hb enthalten, bei 100-prozentiger Sättigung bis zu 15 × 1,34&nbsp;ml = 20,1&nbsp;ml Sauerstoff aufnehmen.
Hämoglobin ist ein [[globuläres Protein]] mit sehr guter Löslichkeit in Wasser (Löslichkeit bis zu 5&nbsp;[[Mol|mmol]]/l Hämoglobin (34 %)). 1&nbsp;g Hb kann [[in vitro]] 1,389&nbsp;ml Sauerstoff binden, [[in vivo]] jedoch nur 1,34&nbsp;ml ([[Hüfner-Zahl|Hüfnersche Zahl]]), somit können 100&nbsp;ml Blut, die etwa 15&nbsp;g Hb enthalten, bei 100-prozentiger Sättigung bis zu 15 × 1,34&nbsp;ml = 20,1&nbsp;ml Sauerstoff aufnehmen.


Auffällig ist der sigmoidale (S-förmige) Verlauf der Bindungskurve. Normalerweise würde man erwarten, dass die Sauerstoffbeladung mit steigendem Sauerstoff[[partialdruck]] wie beim [[Myoglobin]] zunächst stark und dann immer langsamer zunimmt (hyperbolischer Verlauf). Für Hämoglobin verläuft die Sauerstoffbindungskurve im Bereich des in der Lunge herrschenden Sauerstoffpartialdrucks ungewöhnlich flach und im Bereich des im Gewebe herrschenden Sauerstoffpartialdrucks ungewöhnlich steil. Der flache Verlauf der Bindungskurve im Endteil verhindert einen stärkeren Abfall der Sauerstoffsättigung im Alter, bei Lungenfunktionsstörungen und in Höhenlagen, und der steilere Verlauf im Mittelteil sorgt dafür, dass bei einem sinkenden venösen Sauerstoffpartialdruck viel Sauerstoff abgegeben wird.<ref name="Schmidt/Thews Kap. 25">{{Literatur| Herausgeber=Robert F. Schmidt, Gerhard Thews| Titel=Physiologie des Menschen| Auflage=25| Verlag=Springer-Verlag| Ort=Berlin| Jahr=1993| Seiten=616-620| ISBN=3-541-02636-7}}</ref><ref name="Physiologie Urban & Schwarzberg Kap. 5">{{Literatur| Herausgeber=Erich Schütz, Heinz Caspers, Erwin-Josef Speckmann| Titel=Physiologie| Auflage=16| Verlag=Urban & Schwarzberg| Ort=München| Jahr=1982| Seiten=86-87| ISBN=3-540-57104-3}}</ref>
Auffällig ist der sigmoidale (S-förmige) Verlauf der Bindungskurve. Normalerweise würde man erwarten, dass die Sauerstoffbeladung mit steigendem Sauerstoff[[partialdruck]] wie beim [[Myoglobin]] zunächst stark und dann immer langsamer zunimmt (hyperbolischer Verlauf). Für Hämoglobin verläuft die Sauerstoffbindungskurve im Bereich des in der Lunge herrschenden Sauerstoffpartialdrucks ungewöhnlich flach und im Bereich des im Gewebe herrschenden Sauerstoffpartialdrucks ungewöhnlich steil. Der flache Verlauf der Bindungskurve im Endteil verhindert einen stärkeren Abfall der Sauerstoffsättigung im Alter, bei Lungenfunktionsstörungen und in Höhenlagen, und der steilere Verlauf im Mittelteil sorgt dafür, dass bei einem sinkenden venösen Sauerstoffpartialdruck viel Sauerstoff abgegeben wird.<ref name="Schmidt/Thews Kap. 25">{{Literatur |Hrsg=Robert F. Schmidt, [[Gerhard Thews]] |Titel=Physiologie des Menschen |Auflage=25 |Verlag=Springer-Verlag |Ort=Berlin |Datum=1993 |ISBN=3-541-02636-7 |Seiten=616–620}}</ref><ref name="Physiologie Urban & Schwarzberg Kap. 5">{{Literatur |Hrsg=Erich Schütz, Heinz Caspers, Erwin-Josef Speckmann |Titel=Physiologie |Auflage=16 |Verlag=Urban & Schwarzberg |Ort=München |Datum=1982 |ISBN=3-540-57104-3 |Seiten=86–87}}</ref>


=== Normbereich ===
=== Normbereich ===
Zeile 109: Zeile 110:
Für das beim Erwachsenen überwiegende sogenannte „adulte Hämoglobin“ (siehe unten) wurde ein Normbereich festgelegt. Für Kinder gelten andere Normwerte.
Für das beim Erwachsenen überwiegende sogenannte „adulte Hämoglobin“ (siehe unten) wurde ein Normbereich festgelegt. Für Kinder gelten andere Normwerte.


Als [[Referenzwert|Normalbereich]] wird der Bereich bezeichnet, in dem die Hb-Werte von 96 Prozent aller gesunden Menschen liegen.
Als [[Referenzbereich (Medizin)|Normalbereich]] wird der Bereich bezeichnet, in dem die Hb-Werte von 96 Prozent aller gesunden Menschen liegen.


{| class="wikitable" style="float:left; margin-right:10px; text-align:center;"
{| class="wikitable" style="float:left; margin-right:10px; text-align:center;"
Zeile 116: Zeile 117:
!
!
! g/dl<br />(alte Einheit)
! g/dl<br />(alte Einheit)
! mmol/l*<br />([[SI-Einheitensystem|SI-Einheit]])
! mmol/dm³<br />([[SI-Einheitensystem|SI-Einheit]])
|-
|-
| Männer || 13,5–17,5 || 8,7–11,2
| Männer || 13,5–17,5 || 8,4–10,9
|-
|-
| Frauen || 12–16 || 7,5–9,9
| Frauen || 12–16 || 7,4–9,9
|-
|-
| Neugeborene || 19
| Neugeborene || 19 || 11,8
|}<!-- hier müsste noch ein Alternativ-Text zur Tabelle her. Und die Einheiten verlinkt werden. g/dl sind Gramm/Deziliter ? -->
|}<!-- hier müsste noch ein Alternativ-Text zur Tabelle her. Und die Einheiten verlinkt werden. g/dl sind Gramm/Deziliter ? -->


Zeile 129: Zeile 130:
Ein verringerter Hämoglobin-Wert wird als [[Anämie]] bezeichnet, eine verminderte Beladung der roten Blutkörperchen mit Hämoglobin als [[Hypochromasie]].
Ein verringerter Hämoglobin-Wert wird als [[Anämie]] bezeichnet, eine verminderte Beladung der roten Blutkörperchen mit Hämoglobin als [[Hypochromasie]].


Ein erhöhter/verringerter Hämoglobin-Wert ist immer abhängig vom Normalwert. Liegt der Normalwert bei 11,2 mmol/l, dann kann ein Wert von 8,7 mmol/l schon zu [[Symptom]]en von [[Anämie]] führen. Liegt der Normalwert bei 9 mmol/l, dann treten bei 8,7 mmol/l noch keine Symptome auf.
Ein erhöhter/verringerter Hämoglobin-Wert ist immer abhängig vom Normalwert. Liegt der Normalwert bei 10,9&nbsp;mmol/l, dann kann ein Wert von 8,4&nbsp;mmol/l schon zu [[Symptom]]en von [[Anämie]] führen. Liegt der Normalwert bei 9&nbsp;mmol/l, dann treten bei 8,4&nbsp;mmol/l noch keine Symptome auf.


Die Höhe des Hämoglobinwertes ist maßgeblich bei der Zulassung zur [[Blutspende]]. Männer müssen einen Mindestwert von 13,5 g/dl, Frauen einen von 12,5 g/dl aufweisen, um vom Spendearzt zugelassen zu werden. Bestimmt wird der HB-Wert mittels elektronisch messender [[HB-Photometer]].
Die Höhe des Hämoglobinwertes ist maßgeblich bei der Zulassung zur [[Blutspende]]. Männer müssen einen Mindestwert von 8,4&nbsp;mmol/l (13,5&nbsp;g/dl), Frauen einen von 7,8&nbsp;mmol/l (12,5&nbsp;g/dl) aufweisen, um vom Spendearzt zugelassen zu werden. Bestimmt wird der Hb-Wert mittels elektronisch messender [[HB-Photometer|Hb-Photometer]].
Aktuelle Informationen des DRK Blutspendedienstes sagen aus, dass Männer mit einem HB von >18,0 g/dl nicht mehr zur Spende zugelassen werden (12/2006). Dies ist jedoch nicht in allen Bundesländern der Fall, bei erhöhten HB-Wert wird weitere Flüssigkeitsaufnahme vor der Spende empfohlen.
Aktuelle Informationen des DRK-Blutspendedienstes besagen, dass Männer mit einem Hb von >11,2&nbsp;mmol/l (18,0&nbsp;g/dl) nicht mehr zur Spende zugelassen werden (12/2006). Dies ist jedoch nicht in allen Bundesländern der Fall, bei erhöhtem Hb-Wert wird weitere Flüssigkeitsaufnahme vor der Spende empfohlen.


=== Hämoglobinbestimmung ===
Die Bestimmung des Hämoglobingehalts basiert auf dem Nachweis der Hämgruppen des Proteins. Daher wird als [[Mol|molare]] Hämoglobinkonzentration traditionell (so auch hier) die Konzentration der einzelnen Untereinheiten angegeben. Da ein Hämoglobinkomplex-Molekül aus 4 Untereinheiten mit je einer Hämgruppe besteht, müssen die in mmol/l angegebenen Werte durch 4 geteilt werden, um die wahre Konzentration des Hämoglobins zu erhalten. Die in g/dl angegebenen Werte bleiben unverändert.
Ein erster, von [[William Richard Gowers]] entwickelter Apparat zur Bestimmung des Hämoglobingehaltes des Blutes stand 1879 zur Verfügung und wurde 1902 von [[Hermann Sahli]] verbessert.<ref>[[Paul Diepgen]], [[Heinz Goerke]]: ''[[Ludwig Aschoff|Aschoff]]/Diepgen/Goerke: Kurze Übersichtstabelle zur Geschichte der Medizin.'' 7., neubearbeitete Auflage. Springer, Berlin/Göttingen/Heidelberg 1960, S. 49.</ref> Die Bestimmung des Hämoglobingehalts, genannt auch '''Hämoglobinbestimmung''', basiert auf dem Nachweis der Hämgruppen des Proteins. Daher wird als [[mol]]are Hämoglobinkonzentration traditionell (so auch hier) die Konzentration der einzelnen Untereinheiten (mittlere [[molare Masse]]: 16114,5&nbsp;g/mol) angegeben.<ref name="Physioklin.de">R. Zander, W. Lang, P. Lodemann: [http://www.physioklin.de/physiohaem/haemotherapie/das-molekulargewicht-des-haemoglobins.html Das Molekulargewicht des Hämoglobins]. Abgerufen am 13. August 2013.</ref> Der Umrechenfaktor von g/dl zu mmol/l beträgt hierfür also 0,6206. Nach [[IUPAC]] und [[DIN-Norm|DIN]] 58931 wird die so berechnete (monomere) Hämoglobinkonzentration mit ''Hb(Fe)'' bezeichnet.<ref name="Physioklin.de" /> Da ein Hämoglobinkomplex-Molekül aus 4 Untereinheiten mit je einer Hämgruppe besteht, müssen die in mmol/l angegebenen Werte durch 4 geteilt werden, um die Konzentration des Hämoglobin-Tetramers (nach IUPAC und DIN 58931 mit ''Hb'' bezeichnet) zu erhalten (molare Masse: 64458 g/mol).<ref name="Physioklin.de" /> Der Umrechenfaktor von g/dl in mmol/l beträgt hierfür also 0,1551. Die in g/dl angegebenen Werte bleiben jeweils unverändert.


=== Sauerstoffbindung durch Hämoglobine auf molekularer Ebene ===
=== Sauerstoffbindung durch Hämoglobine auf molekularer Ebene ===
[[Datei:Heme deoxy vs oxygenated.jpg|mini|O<sub>2</sub>-Bindung: Verlagerung des Zentralatoms Fe<sup>II</sup> in die Ringebene]]
[[Datei:Haemoglobin.svg|miniatur|hochkant=1.5|Mechanismus der Sauerstoffanbindung durch Hämoglobin]]
[[Datei:HEME + DISTAL HISTIDINE.jpg|mini|O<sub>2</sub>-Bindung: [[Wasserstoffbrückenbindung|H-Brückenbindung]] mit der Seitenkette von (distalem) [[Histidin]] (nicht gezeigt: das proximale Histidin, siehe Abbildung oben)]]
Bei der Bindung des Disauerstoffmoleküls wird das Eisenzentrum zur Oxidationsstufe III oxidiert. Das Sauerstoffmolekül wird zum Superoxid reduziert und bindet an das Eisenzentrum (Formulierung nach Weiss). Pauling formuliert dagegen einen Fe(II)-Disauerstoffkomplex. In der Nähe des Eisenzentrums befindet sich ein distales Histidin, welches das gebundene Sauerstoffmolekül über eine Wasserstoffbrücke stabilisiert. Das Eisenzentrum geht durch die Sauerstoffbindung in einen ''[[Kristallfeld- und Ligandenfeldtheorie|low-spin]]''-Zustand über. Dabei verringert sich seine Größe und es rutscht in den Porphyrinring hinein.

Bei der Bindung von Sauerstoff wird ein Disauerstoffmolekül (O<sub>2</sub>) in das Zentrum des Häm-Komplexes aufgenommen. Das Atom des zentralen Eisenions (Fe<sup>II</sup>) geht durch die Sauerstoffbindung in einen ''[[Kristallfeld- und Ligandenfeldtheorie#Besetzung der Orbitale zu High-Spin- oder Low-Spin-Komplexen|low-spin]]''-Zustand über. Dabei verringert sich seine Größe und es rutscht in die Ebene des Porphyrinrings.

Stabilisiert wird das gebundene Sauerstoffmolekül über eine [[Wasserstoffbrücke]]. Diese wird mit der Seitenkette des [[Globine|Globinproteins]] gebildet: einem distal gelegenen [[Histidin]]rest, der sich in der Nähe des Zentralatoms befindet. Jener proximale Histidinrest, über den das Eisenatom des Häms an die Proteinmatrix gebunden ist, liegt auf der anderen Seite der Ringebene.


=== Kooperativer Effekt bei der Sauerstoffbindung ===
=== Kooperativer Effekt bei der Sauerstoffbindung ===
Ein Hämoglobinmolekül kann vier Sauerstoffmoleküle binden. Aus rein statistischen Erwägungen wäre zu erwarten, dass das Bestreben, weitere Sauerstoffmoleküle zu binden, mit jedem bereits gebundenen Sauerstoffmolekül abnimmt. Untersuchungen haben jedoch gezeigt, dass das Gegenteil der Fall ist und die Sauerstoff[[Affinität (Biochemie)|affinität]] mit steigender Beladung zunimmt (positive [[Kooperativität]]).<ref>Adair GS: ''The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin.'' In: ''[[J Biol Chem]]'' 1925;63:529–545.</ref><ref>D. E. Koshland, G. Némethy, D. Filmer: ''Comparison of experimental binding data and theoretical models in proteins containing subunits.'' In: ''[[Biochemistry]].'' Band 5, Nummer 1, Januar 1966, S.&nbsp;365–385, {{ISSN|0006-2960}}. PMID 5938952. </ref>
Ein Hämoglobin, das aus vier Hb-Untereinheiten besteht, kann vier Sauerstoffmoleküle binden. Aus rein statistischen Erwägungen wäre zu erwarten, dass das Bestreben, weitere Sauerstoffmoleküle zu binden, mit jedem bereits gebundenen Sauerstoffmolekül abnimmt. Untersuchungen haben jedoch gezeigt, dass das Gegenteil der Fall ist und die Sauerstoff[[Affinität (Biochemie)|affinität]] mit steigender Beladung zunimmt (positive [[Kooperativität]]).<ref>G. S. Adair: ''The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin.'' In: ''[[J Biol Chem]].'' Band 63, 1925, S. 529–545.</ref><ref>D. E. Koshland, G. Némethy, D. Filmer: ''Comparison of experimental binding data and theoretical models in proteins containing subunits.'' In: ''[[Biochemistry]].'' Band 5, Nummer 1, Januar 1966, S.&nbsp;365–385, {{ISSN|0006-2960}}. PMID 5938952.</ref>


=== pH-Wert-Abhängigkeit der Sauerstoffbindung ===
=== pH-Wert-Abhängigkeit der Sauerstoffbindung ===
Das Gleichgewicht zwischen R- und T-Form ist pH-abhängig ([[Bohr-Effekt]]) und wird bei einem niedrigen pH-Wert durch Protonierung zugunsten der weniger sauerstoffaffinen T-Form verschoben. Denselben Effekt hat ein hoher CO<sub>2</sub> -[[Partialdruck]] durch eine reversible [[Carboxylierung]] der Untereinheiten.
Das Gleichgewicht zwischen R- und T-Form ist pH-abhängig ([[Bohr-Effekt]]) und wird bei einem niedrigen pH-Wert durch Protonierung zugunsten der weniger sauerstoffaffinen T-Form verschoben. Denselben Effekt hat ein hoher CO<sub>2</sub> -[[Partialdruck]] durch eine reversible [[Carboxylierung]] der Untereinheiten.
Dies führt dazu, dass hohe [[Proton (Chemie)|Protonen]]- und [[Kohlenstoffdioxid]]-Konzentrationen, wie sie z.B. durch [[Zellatmung]] und [[Milchsäuregärung]] im arbeitenden Muskel herrschen, eine vollständige Entladung des Hämoglobins begünstigen.
Dies führt dazu, dass hohe [[Proton (Chemie)|Protonen]]- und [[Kohlenstoffdioxid]]-Konzentrationen, wie sie z.&nbsp;B. durch [[Zellatmung]] und [[Milchsäuregärung]] im arbeitenden Muskel herrschen, eine vollständige Entladung des Hämoglobins begünstigen.


=== Konkurrenz zwischen Sauerstoff und Kohlenstoffmonoxid ===
=== Konkurrenz zwischen Sauerstoff und Kohlenstoffmonoxid ===
[[Kohlenstoffmonoxid]] (CO) ist sehr giftig, da es mit dem Sauerstoff um die axialen Koordinationsstellen der Eisenzentren konkurriert. An das freie Häm ''b'' bindet Kohlenstoffmonoxid 25000 Mal stärker als Disauerstoff, im Hämoglobin dagegen nur etwa 200 Mal. Die Ursache für die verringerte CO-Affinität ist, dass aufgrund des Raumbedarfes des distalen Histidins, die vom Kohlenstoffmonoxid bevorzugte lineare Fe-CO-Koordination nicht möglich ist. Einmal gebunden, kann CO z.&nbsp;B. lediglich durch Sauerstoffdruckbehandlung in einer Druckkammer verdrängt werden – es blockiert also Bindungsstellen für Sauerstoff.
[[Kohlenstoffmonoxid]] (CO) ist sehr giftig, da es mit dem Sauerstoff um die axialen Koordinationsstellen der Eisenzentren konkurriert. Einmal gebunden, kann CO z.&nbsp;B. lediglich durch Sauerstoffdruckbehandlung in einer Druckkammer verdrängt werden – es blockiert also Bindungsstellen für Sauerstoff. Bei starken Rauchern sind bis zu 10 Prozent des Hämoglobins mit CO besetzt.<br />An das freie Häm ''b'' bindet Kohlenstoffmonoxid 25000 Mal stärker als Disauerstoff, im Hämoglobin dagegen nur etwa 200 Mal. Die Ursache für die verringerte CO-Affinität ist, dass aufgrund des Raumbedarfes des distalen Histidins die vom Kohlenstoffmonoxid bevorzugte lineare Fe-CO-Koordination nicht möglich ist.
Bei starken Rauchern sind bis zu 10 Prozent des Hämoglobins mit CO besetzt.


=== Effekte, welche die Sauerstoffbindung beeinflussen ===
=== Effekte, welche die Sauerstoffbindung beeinflussen ===
Zeile 155: Zeile 160:
Die Sauerstoffbindungskurve wird auf der [[Abszisse]] nach rechts verschoben durch:
Die Sauerstoffbindungskurve wird auf der [[Abszisse]] nach rechts verschoben durch:
* Temperaturanstieg
* Temperaturanstieg
* Absinken des [[pH-Wert]]s
* Absinken des [[pH-Wert]]s
* Steigerung der Konzentration von [[2,3-Bisphosphoglycerat]] in den [[Erythrozyt]]en
* Steigerung der Konzentration von [[2,3-Bisphosphoglycerat]] in den [[Erythrozyt]]en
* Steigerung der Konzentration von [[Kohlenstoffdioxid]]
* Steigerung der Konzentration von [[Kohlenstoffdioxid]]
Zeile 164: Zeile 169:
Die Sauerstoffbindungskurve wird auf der [[Abszisse]] nach links verschoben durch:
Die Sauerstoffbindungskurve wird auf der [[Abszisse]] nach links verschoben durch:
* Temperaturabnahme
* Temperaturabnahme
* Anstieg des [[pH-Wert]]s
* Anstieg des [[pH-Wert]]s
* Absinken der Konzentration von [[2,3-Bisphosphoglycerat]] in den Erythrozyten
* Absinken der Konzentration von [[2,3-Bisphosphoglycerat]] in den Erythrozyten
* Absinken der Konzentration von [[Kohlenstoffdioxid]]
* Absinken der Konzentration von [[Kohlenstoffdioxid]]


Die ''Linksverschiebung'' führt dazu, dass Hämoglobin Sauerstoff stärker bindet. Dies macht man sich z.&nbsp;B. bei Herzoperationen zu nutze, indem man den Patienten unterkühlt, um sein Blut maximal mit Sauerstoff zu sättigen. Tiere, die [[Winterschlaf]] halten, profitieren ebenfalls von diesem Effekt.
Die ''Linksverschiebung'' führt dazu, dass Hämoglobin Sauerstoff stärker bindet. Dies macht man sich z.&nbsp;B. bei Herzoperationen zunutze, indem man den Patienten unterkühlt, um sein Blut maximal mit Sauerstoff zu sättigen. Tiere, die [[Winterschlaf]] halten, profitieren ebenfalls von diesem Effekt.
In den Lungen wird ein Teil des Kohlendioxids im Zuge der Ausatmung abgegeben – das Hb kann wieder leichter mit Sauerstoff beladen werden.
In den Lungen wird ein Teil des Kohlendioxids im Zuge der Ausatmung abgegeben – das Hb kann wieder leichter mit Sauerstoff beladen werden.


Das im [[Rapoport-Luebering-Zyklus]] (Nebenweg der Glycolyse) durch das Enzym [[Bisphosphoglyceratmutase]] gebildete [[2,3-Bisphosphoglycerat]] ist das wichtigste [[Stoffwechselintermediat|Intermediat]] der [[Glykolyse]] in den roten Blutkörperchen. Es bindet an Hämoglobin und verursacht einen [[Allosterie|allosterischen Effekt]]; die Abnahme der Affinität des Hämoglobins zum Sauerstoff. Es ist lebenswichtig, um die Abgabe von Sauerstoff im Organismus zu ermöglichen. Unter physiologischen Bedingungen liegt 2,3-BPG in den roten Blutkörperchen etwa in derselben Konzentration wie Hämoglobin vor. Eine Erhöhung der 2,3-BPG-Konzentration ist z.&nbsp;B. bei der Höhenanpassung zu beobachten. Sinn dieser Regulation ist folgender:

Das im [[Rapoport-Luebering-Zyklus]] (Nebenweg der Glycolyse) durch das Enzym [[Bisphosphoglyceratmutase]] gebildete [[2,3-Bisphosphoglycerat]] ist das wichtigste [[Stoffwechselintermediat|Intermediat]] der [[Glykolyse]] in den roten Blutkörperchen. Es bindet an Hämoglobin und verursacht einen [[Allosterie|allosterischen Effekt]]; die Abnahme der Affinität des Hämoglobins zum Sauerstoff. Es ist lebenswichtig, um die Abgabe von Sauerstoff im Organismus zu ermöglichen. Unter physiologischen Bedingungen liegt 2,3-BPG in den roten Blutkörperchen etwa in derselben Konzentration wie Hämoglobin vor. Eine Erhöhung der 2,3-BPG-Konzentration ist z.B. bei der Höhenanpassung zu beobachten. Sinn dieser Regulation ist folgender:
Ist die Sauerstoffsättigung im Blut durch die „dünne Luft“ in großer Höhe vermindert, gibt Hb den gebundenen Sauerstoff an die Verbraucher schlechter ab als bei hoher Sättigung (siehe Bindungskurve). Trotzdem muss die Versorgung aller Organe mit O<sub>2</sub> gewährleistet sein. Hb muss also weniger affin zum Sauerstoff werden, um die [[Peripherie]] ausreichend zu versorgen.
Ist die Sauerstoffsättigung im Blut durch die „dünne Luft“ in großer Höhe vermindert, gibt Hb den gebundenen Sauerstoff an die Verbraucher schlechter ab als bei hoher Sättigung (siehe Bindungskurve). Trotzdem muss die Versorgung aller Organe mit O<sub>2</sub> gewährleistet sein. Hb muss also weniger affin zum Sauerstoff werden, um die [[Peripherie]] ausreichend zu versorgen.


== Hämoglobin-Typen ==
== Hämoglobin-Typen ==
In verschiedenen Lebensphasen (Embryonalphase, Fetalphase und nach der Geburt, d.&nbsp;h. „adulte Phase“) sind beim Menschen verschiedene Hämoglobine zu finden. Diese Hämoglobine unterscheiden sich in ihrer Affinität für Sauerstoff. Sie bestehen aus jeweils vier Untereinheiten in paarweise verschiedener Zusammensetzung.
Es gibt beim Menschen vier leicht verschiedene Hämoglobine, wobei mit Hämoglobin im Allgemeinen der Haupttyp&nbsp;A1 (HbA1 oder auch einfach&nbsp;HbA) bezeichnet wird. Außerdem gibt es noch Hämoglobin&nbsp;A2 (HbA2), sowie die [[Fetus|fetalen]] Hämoglobine HbF und Gower-2. Diese vier [[Proteinkomplex]]e unterscheiden sich in den Protein-Untereinheiten, aus denen sie aufgebaut sind: HbA1 besteht aus zwei α- und zwei β-, HbF aus zwei α- und zwei γ-, HbA2 aus zwei α- und zwei δ-, sowie Gower-2 aus zwei α- und zwei ε-Untereinheiten.
[[Datei:Haemoglobin-Ketten.svg|mini|350px|Synthese der verschiedenen Hämoglobinketten und deren Bildungsorte während der Schwangerschaft und perinatal]]
Entwicklungsgeschichtlich sind die unterschiedlichen Untereinheiten des Hämoglobins durch [[Genduplikation]]en des Globin-Gens entstanden. Die Kombinationen dieser Untereinheiten als Tetramer werden je nach [[Sauerstoff]]bedarf zu unterschiedlichen Zeitpunkten synthetisiert, beispielsweise um als [[Fötus]] im Mutterleib Sauerstoff aus dem mütterlichen Blut zu erhalten.


Während der [[Schwangerschaft]] wird Sauerstoff durch die [[Plazenta]] (Mutterkuchen) zum [[Fötus]] transportiert, den dieser dann effizient aufnimmt. Dies wird dadurch gewährleistet, dass die embryonalen und fetalen Hämoglobin-Typen eine deutlich höhere Sauerstoff-Bindungsaffinität haben als das später nachgeburtlich gebildete adulte Hämoglobin. Außerdem ist der [[Hämatokrit]] im Vergleich zur Mutter stark erhöht. Auf diese Weise gelangt durch die Nabelschnur genug Sauerstoff zum Fötus.
[[Datei:Haemoglobin-Ketten.png|thumb|350px|Synthese der verschiedenen Hämoglobinketten und deren Bildungsorte während der Schwangerschaft und perinatal]]
Durch [[Genduplikation]]en des Globin-Gens sind unterschiedliche Untereinheiten des Hämoglobins entstanden, welche unterschiedliche Affinitäten für Sauerstoff besitzen. Die Kombinationen dieser Untereinheiten als Tetramer werden je nach [[Sauerstoff]]bedarf zu unterschiedlichen Zeitpunkten synthetisiert, beispielsweise um als [[Fötus]] im Mutterleib [[Sauerstoff]] aus dem mütterlichen Blut zu erhalten.


=== Embryonale Hämoglobine ===
=== Embryonale Hämoglobine ===
Die ''[[Embryonales Hämoglobin|embryonalen Hämoglobine]]'' werden in der Embryonalphase, den ersten 8 Wochen nach der Befruchtung, in Blutinseln des [[Dottersack]]s gebildet und tragen Eigennamen:

* ''Gower-1'' (ζ<sub>2</sub>ε<sub>2</sub>) („zeta-epsilon“)
Während der [[Schwangerschaft]] muss Sauerstoff durch die [[Plazenta]] (Mutterkuchen) zum [[Fötus]] transportiert werden. Das ungeborene Kind besitzt einen anderen Hämoglobin-Typ, das ''HbF'', das Sauerstoff mit wesentlich höherer Affinität bindet. Außerdem ist der [[Hämatokrit]] im Vergleich zur Mutter stark erhöht. Auf diese Weise gelangt durch die Nabelschnur genug Sauerstoff zum Fötus.
* ''Gower-2'' (α<sub>2</sub>ε<sub>2</sub>) („alpha-epsilon“)

* ''Portland-1'' (ζ<sub>2</sub>γ<sub>2</sub>) („zeta-gamma“)
Die embryonalen Hämoglobine werden in der Embryonalphase, d.h. während der ersten 8 Wochen nach Befruchtung im [[Dottersack]] gebildet und tragen Eigennamen:
* ''Gower 1'' (ζ<sub>2</sub>ε<sub>2</sub>) ("zeta-epsilon")
* ''Portland-2'' (ζ<sub>2</sub>β<sub>2</sub>) („zeta-beta“)
* ''Gower 2'' (α<sub>2</sub>ε<sub>2</sub>) ("alpha-epsilon")
* ''Portland'' (ζ<sub>2</sub>γ<sub>2</sub>) ("zeta-gamma")


=== Fetale Hämoglobine ===
=== Fetale Hämoglobine ===
Als ''fetales Hämoglobin'' wird das während der Fetalperiode (ab der 9. Woche nach Befruchtung bis zur Geburt) vorwiegend gebildete Hämoglobin F (HbF) bezeichnet. Die Synthese des fetalen Hämoglobins beginnt schon in der vorangehenden Embryonalphase und wird auch nicht sofort nach Geburt gestoppt, sondern hält noch einige Monate an. Bildungsort sind [[Leber]] und [[Milz]]. Es hat eine viel höhere Sauerstoffaffinität als adultes Hämoglobin, um den Sauerstoff aus dem mütterlichen Blut aufzunehmen.
Als ''fetales Hämoglobin'' wird das während der Fetalperiode (ab der 9. Woche nach Befruchtung bis zur Geburt) vorwiegend gebildete Hämoglobin F (HbF) bezeichnet. Die Synthese des fetalen Hämoglobins beginnt schon in der vorangehenden Embryonalphase und wird auch nicht sofort nach der Geburt gestoppt, sondern hält noch einige Monate an. Bildungsort sind [[Leber]] und [[Milz]]. Es hat eine viel höhere Sauerstoffaffinität als adultes Hämoglobin, um den Sauerstoff aus dem mütterlichen Blut aufzunehmen.
* Hämoglobin F (α<sub>2</sub>γ<sub>2</sub>) - Im Fötus das dominierende Hämoglobin, bei gesunden Erwachsenen nur in Spuren nachweisbar
* Hämoglobin F (α<sub>2</sub>γ<sub>2</sub>)&nbsp;– Im Fötus das dominierende Hämoglobin, bei gesunden Erwachsenen nur in Spuren nachweisbar


=== Adulte Hämoglobine ===
=== Adulte Hämoglobine ===
Als ''adulte Hämoglobine'' gelten Hämoglobin A<sub>1</sub> (HbA<sub>1</sub>) und Hämoglobin A<sub>2</sub> (HbA<sub>2</sub>). Die Synthese der adulten Hämoglobine beginnt schon im Fetus und ersetzt dann in den ersten Monaten nach Geburt das fetale Hämoglobin. Bildungsort ist das [[Knochenmark]]. Beim gesunden Erwachsenen ist fetales Hämoglobin nur in Spuren nachweisbar.
Als ''adulte Hämoglobine'' gelten Hämoglobin A<sub>2</sub>β<sub>2</sub>; HbA<sub>0</sub> [früher Hb A<sub>1</sub> genannt, die Bezeichnung HbA<sub>1c</sub> steht für eine glykierte Form]<ref>{{Internetquelle |url=https://www.pschyrembel.de/H%C3%A4moglobinelektrophorese/K09AR |titel=Pschyrembel Online |abruf=2021-07-29}}</ref>) und Hämoglobin A<sub>2</sub> (α<sub>2</sub>δ<sub>2</sub>; HbA<sub>2</sub>). Die Synthese der adulten Hämoglobine beginnt schon im Fetus und ersetzt dann in den ersten Monaten nach Geburt das fetale Hämoglobin. Bildungsort ist das [[Knochenmark]]. Während des ersten Lebensjahres wird die Expression des γ-Gens abgesenkt und die des β-Gens erhöht.<ref>{{Internetquelle |url=https://www.nejm.org/doi/10.1056/NEJMcibr1809628 |titel=Hemoglobinopathies in the Fetal Position {{!}} NEJM |sprache=en |abruf=2019-01-31}}</ref> Der [[Transkriptionsfaktor]] [[BCL11A]] ist der entscheidende Repressor des γ-Globins beim Erwachsenen.<ref>{{Literatur |Autor=Vijay G. Sankaran, Tobias F. Menne, Jian Xu, Thomas E. Akie, Guillaume Lettre |Titel=Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A |Sammelwerk=Science (New York, N.Y.) |Band=322 |Nummer=5909 |Datum=2008-12-19 |ISSN=1095-9203 |Seiten=1839–1842 |DOI=10.1126/science.1165409 |PMID=19056937}}</ref> Daher ist fetales Hämoglobin beim Erwachsenen nur in Spuren nachweisbar.
* [[Hämoglobin A|Hämoglobin A<sub>1</sub>]] (α<sub>2</sub>β<sub>2</sub>) - 98 %
* Hämoglobin A (α<sub>2</sub>β<sub>2</sub>)&nbsp;– 98 %
* [[Hämoglobin A2|Hämoglobin A<sub>2</sub>]] (α<sub>2</sub>δ<sub>2</sub>) - 2 %.
* Hämoglobin A<sub>2</sub> (α<sub>2</sub>δ<sub>2</sub>)&nbsp;– 2 %.

=== Glykohämoglobine ===
Glykohämoglobine entstehen durch Bindung von [[Glucose]] an Aminogruppen der Globine. Dies geschieht unter physiologischen Bedingungen nicht-enzymatisch durch den Kontakt des Hämoglobins mit dem [[Blutzucker]] ([[Glykierung]]). Die Hauptkomponente HbA<sub>0</sub> des Hämoglobins A wird dabei vorwiegend in [[HbA1c|HbA<sub>1c</sub>]] umgewandelt, bei dem Glucose an die [[N-Terminus|''N''-terminale]] Aminosäure [[Valin]] der β-Kette gebunden vorliegt. Der jeweilige Anteil von HbA<sub>1c</sub> am Gesamthämoglobin wird als Hinweis auf die durchschnittliche Blutzuckerhöhe der vergangenen Wochen interpretiert.

=== Methämoglobin ===
[[Methämoglobin]] (Met-Hb) ist eine deaktivierte, nicht sauerstoffaffine Form des Hämoglobins, in der das Eisenion sich in der Oxidationsstufe III statt II befindet. Das [[Nicotinamidadenindinukleotid|NADH]]-abhängige [[Enzym]] [[Methämoglobin-Reduktase]] (Diaphorase I) ist in der Lage, Methämoglobin wieder in Hämoglobin zu überführen. In der Regel liegen beim Menschen zwei Prozent des Hämoglobins als Methämoglobin vor. Ein höherer Anteil kann entweder genetisch bedingt oder Folge einer Vergiftung sein. Ein hoher Methämoglobinanteil hat eine mangelhafte Sauerstoffversorgung des Organismus zur Folge.


== Abbau von Hämoglobin ==
== Abbau von Hämoglobin ==
Wenn die roten Blutkörperchen das Ende ihres Lebens (etwa 120 Tage) erreicht haben, werden sie in den mononukleären Phagozyten hauptsächlich in der Milz (und bei hohem Anfall von abzubauendem Hämoglobin auch in der Leber und im Knochenmark) abgebaut. Der Abbauprozess beginnt in der Milz und wird in der Leber fortgesetzt. Zuerst wird der Globinanteil vom Häm getrennt und zu Aminosäuren degradiert. Das Häm wird über eine Cytochrom-P450-abhängige Oxygenase ([[Hämooxygenase]]) zu Biliverdin gespalten, wobei Eisen (Fe<sup>2+</sup>) und Kohlenmonoxid frei werden. Das Eisen wird von den Makrophagen an das im Blut vorhandene Transportprotein [[Transferrin]] abgegeben. Die [[Biliverdin-Reduktase]] wandelt schließlich das grünliche Biliverdin in [[Bilirubin]] um. Dieses wird ins Blut abgegeben und an [[Albumin]] gekoppelt (da es schlecht wasserlöslich ist) und zur Leber transportiert. Hier wird das Bilirubin zweifach mit [[Glucuronsäure]] [[Konjugation (Biochemie)|konjugiert]] und somit löslich gemacht&nbsp;– es kann nun mit der [[Galle]] in den [[Darm]] abgegeben und über den Stuhl ausgeschieden werden.
Wenn die roten Blutkörperchen das Ende ihres Lebens (etwa 120 Tage) erreicht haben, werden sie in den mononukleären Phagozyten hauptsächlich in der Milz (und bei hohem Anfall von abzubauendem Hämoglobin auch in der Leber und im Knochenmark) abgebaut. Der Abbauprozess beginnt in der Milz und wird in der Leber fortgesetzt. Zuerst wird der Globinanteil vom Häm getrennt und zu Aminosäuren degradiert. Das Häm wird über eine Cytochrom-P450-abhängige Oxygenase ([[Hämooxygenase]]) zu [[Biliverdin]] gespalten, wobei Eisen (Fe<sup>2+</sup>) und Kohlenmonoxid frei werden. Das Eisen wird von den Makrophagen an das im Blut vorhandene Transportprotein [[Transferrin]] abgegeben. Die [[Biliverdin-Reduktase]] wandelt schließlich das grünliche Biliverdin in [[Bilirubin]] um. Dieses wird ins Blut abgegeben und an [[Albumin]] gekoppelt (da es schlecht wasserlöslich ist) und zur Leber transportiert. Hier wird das Bilirubin zweifach mit [[Glucuronsäure]] [[Konjugation (Biochemie)|konjugiert]] und somit löslich gemacht&nbsp;– es kann nun mit der [[Galle]] in den [[Darm]] abgegeben und über den Stuhl ausgeschieden werden.
Im Darm sorgen Bakterien dafür, dass die Glucuronsäure teilweise wieder gespalten wird, und auf diese Weise das orangefarbene Bilirubin reduziert wird zu farblosem [[Urobilinogen]] und zu braunem [[Sterkobilinogen]]. Ein geringer Anteil dieses reduzierten Bilirubins wird wieder über den Darm aufgenommen und über die [[Niere]] ausgeschieden (gelbe Farbe des [[Urin]]s). Verschiedene Lebererkrankungen wie die Leberentzündung ([[Hepatitis]]) oder Abflussbehinderungen in der [[Gallenblase]] (Gallensteine) führen zu einer erhöhten Bilirubinkonzentration. Bilirubin ist der Farbstoff, der bei Einlagerung in die Haut zur so genannten [[Gelbsucht]] (Ikterus = Gelbfärbung der Haut und Lederhaut ([[Sclera]]) der Augen) führt.
Im Darm sorgen Bakterien dafür, dass die Glucuronsäure teilweise wieder gespalten wird, und auf diese Weise das orangefarbene Bilirubin reduziert wird zu farblosem [[Urobilinogen]] und zu braunem [[Sterkobilinogen]]. Ein geringer Anteil dieses reduzierten Bilirubins wird wieder über den Darm aufgenommen ([[enterohepatischer Kreislauf]]) und über die [[Niere]] ausgeschieden (gelbe Farbe des [[Urin]]s). Verschiedene Lebererkrankungen wie die Leberentzündung ([[Hepatitis]]) oder Abflussbehinderungen in der [[Gallenblase]] (Gallensteine) führen zu einer erhöhten Bilirubinkonzentration. Bilirubin ist der Farbstoff, der bei Einlagerung in die Haut zur so genannten [[Gelbsucht]] (Ikterus = Gelbfärbung der Haut und Lederhaut ([[Sclera]]) der Augen) führt.


== Rolle bei Krankheiten ==
== Rolle bei Krankheiten ==


[[Mutation]]en im ''[[HBA1]]''-[[Gen]] können zu Defekten der α-Untereinheit und diese zu [[Heinz-Körper]]-[[Anämie]] und zur [[α-Thalassämie]] führen. Mutationen im [[Beta Globin|''HBB'']]-Gen können die Ursache für Heinz-Körper-Anämie, β-Thalassämie und [[Sichelzellenanämie]] werden. Manche Varianten der ''[[HBG1]]''/''[[HBG2]]''-Gene können [[Neugeborenengelbsucht]] verursachen.<ref>{{UniProt|P69905}}, {{UniProt|P68871}}, {{UniProt|P69891}}</ref>
[[Mutation]]en im ''[[HBA1]]''-[[Gen]] können zu Defekten der α-Untereinheit und diese zu [[Heinz-Körper]]-[[Anämie]] und zur [[α-Thalassämie]] führen. Mutationen im [[β-Globin|''HBB'']]-Gen können die Ursache für Heinz-Körper-Anämie, β-Thalassämie und [[Sichelzellenanämie]] werden. Manche Varianten der ''[[HBG1]]''/''[[HBG2]]''-Gene können [[Neugeborenengelbsucht]] verursachen.<ref>{{UniProt|P69905}}, {{UniProt|P68871}}, {{UniProt|P69891}}</ref>


Reduzierte Hämoglobinwerte, mit oder ohne Reduktion der Zahl von roten Blutkörperchen, führen zu den Symptomen einer [[Anämie]]. Es gibt viele Ursachen für eine [[Anämie]], wobei [[Eisenmangelanämie|Eisenmangel]] der häufigste Grund in der westlichen Welt sein dürfte. Durch Eisenmangel wird die Häm-Synthese gehemmt. Als Folge sind die roten Blutkörperchen ''hypochromisch'' (ohne die rote Farbe) und [[Mikrozytose|''mikrozytisch'']] (kleiner als normal).
Reduzierte Hämoglobinwerte, mit oder ohne Reduktion der Zahl von roten Blutkörperchen, führen zu den Symptomen einer [[Anämie]]. Es gibt viele Ursachen für eine Anämie, wobei [[Eisenmangelanämie|Eisenmangel]] der häufigste Grund in der westlichen Welt sein dürfte. Durch Eisenmangel wird die Häm-Synthese gehemmt. Als Folge sind die roten Blutkörperchen [[Hypochromie|hypochrom]] (ohne die rote Farbe) und [[Mikrozytose|''mikrozytisch'']] (kleiner als normal).


Bei einer [[Hämolyse]] (verstärkter Abbau von roten Blutkörperchen) tritt eine [[Gelbsucht]] auf, verursacht durch das Hämoglobin-[[Metabolit]] [[Bilirubin]].
Bei einer [[Hämolyse]] (verstärkter Abbau von roten Blutkörperchen) tritt ein [[Ikterus]] auf, verursacht durch den Hämoglobin-[[Metabolit]] [[Bilirubin]]. Bis zu einer Menge von 135&nbsp;mg/dl wird in den Blutgefäßen freigesetztes Hämoglobin an [[Haptoglobin]] gebunden, bei einem stärkeren Blutzerfall kommt es zum Auftreten von freiem Hämoglobin im Blut ([[Hämoglobinämie]]).<ref>{{Literatur |Autor=Wolfgang Piper |Titel=Innere Medizin |Auflage=2. |Verlag=Springer |Ort=Berlin |Datum=2002 |ISBN=978-3-642-33108-4 |Seiten=639–640}}</ref>


Eine Gruppe von genetischen Defekten, bekannt als [[Porphyrie]]n, führen zu einer Störung der Hämsynthese. Durch die Anreicherung von Häm-Vorstufen kommt es unter anderem zu Lichtempfindlichkeit, [[Abdominalschmerzen]] und [[Neurologie|neurologischen Problemen]].
Eine Gruppe von genetischen Defekten, bekannt als [[Porphyrie]]n, führen zu einer Störung der Hämsynthese. Durch die Anreicherung von Häm-Vorstufen kommt es unter anderem zu Lichtempfindlichkeit, [[Abdominalschmerz]]en und [[Neurologie|neurologischen Problemen]] sowie zur Porphyrinurie.


Bei der Methämoglobinämie wird das in den roten Blutkörperchen vorhandene Hämoglobin, das dem Sauerstofftransport dient, in das funktionsunfähige Methämoglobin umgewandelt und steht damit nicht mehr für den Sauerstofftransport zur Verfügung. Die Ursache dafür kann erblich bedingt sein (''kongenitale Methämoglobinämie'') oder durch Giftstoffe ausgelöst werden.
Mutationen in den Globinketten sind mit verschiedenen [[Hämoglobinopathie]]en verbunden, wie die [[Sichelzellenanämie]] und [[Thalassämie]].


Mutationen in den Globinketten sind mit verschiedenen [[Hämoglobinopathie]]n verbunden, wie die [[Sichelzellenanämie]] und [[Thalassämie]].
Die Erreger der [[Malaria]] spalten Hämoglobin in von ihnen infizierten roten Blutkörperchen, um daraus Proteine für ihren eigenen Stoffwechsel zu gewinnen. Aus dem Häm entsteht dabei [[Hämozoin]], das vom Parasiten kristallisiert wird und unter dem Mikroskop in den infizierten [[Erythrozyten]] als Pigment erkennbar ist. Das Malaria-Medikament [[Chloroquin]] hemmt diese Kristallisierung und der Parasit wird durch das Häm vergiftet.

Die Erreger der [[Malaria]] spalten Hämoglobin in von ihnen infizierten roten Blutkörperchen, um daraus Proteine für ihren eigenen Stoffwechsel zu gewinnen. Aus dem Häm entsteht dabei [[Hämozoin]], das vom Parasiten kristallisiert wird und unter dem Mikroskop in den infizierten [[Erythrozyt]]en als Pigment erkennbar ist. Das Malaria-Medikament [[Chloroquin]] hemmt diese Kristallisierung und der Parasit wird durch das Häm vergiftet.


== Nachweis ==
== Nachweis ==
Der Nachweis von Hämoglobin erfolgt durch den Teichmann-Test, bei dem Blut vorsichtig mit [[Natriumchlorid|Kochsalz]] und [[Eisessig]] erwärmt wird, wobei sich [[Hämin]] (Teichmann-Kristalle) abscheidet, oder mit der [[Luminol]]reaktion, bei der eine Lösung aus Luminol sowie [[Natronlauge]] und eine Lösung aus [[Wasserstoffperoxid]] verwendet wird. Diese Reaktion findet nur in Anwesenheit eines Katalysators statt, im Nachweisfalle von Hämoglobin wäre dieser das Eisen-(II)-Ion im Häm-Komplex.
Der Nachweis von Hämoglobin erfolgt durch den Teichmann-Test, bei dem Blut vorsichtig mit [[Natriumchlorid|Kochsalz]] und [[Eisessig]] erwärmt wird, wobei sich [[Hämin]] (Teichmann-Kristalle) abscheidet, oder mit der [[Luminol]]reaktion, bei der eine Lösung aus Luminol sowie [[Natronlauge]] und eine Lösung aus [[Wasserstoffperoxid]] verwendet wird. Diese Reaktion findet nur in Anwesenheit eines Katalysators statt, im Nachweisfalle von Hämoglobin wäre dieser das Eisen(II)-Ion im Häm-Komplex.


== Hämoglobin in Kunst und Musik ==
== Siehe auch ==
[[Datei:Hemoglobin 3up.jpg|mini|450px|Die Skulptur ''Heart of Steel (Hemoglobin)'' von [[Julian Voss-Andreae]] in der Stadt Lake Oswego im US-amerikanischen Bundesstaat [[Oregon]]. Das Bild links wurde unmittelbar nach der Enthüllung aufgenommen, das mittlere Bild nach 10 Tagen und das rechte Bild, nachdem die Plastik einige Monate der Witterung ausgesetzt war.]]
=== Andere sauerstoffbindende Proteine ===
{{Hauptartikel|Sauerstofftransporter}}
Hämoglobin ist nicht der einzige [[Sauerstofftransporter]] in der Natur.


* Der deutsch-amerikanische Künstler [[Julian Voss-Andreae]] hat 2005 eine Skulptur geschaffen, die auf der Struktur des Hämoglobins beruht.<ref>{{Literatur |Autor=Constance Holden |Titel=Blood and Steel |Sammelwerk=Science |Band=309 |Nummer=5744 |Datum=2005-09-30 |Seiten=2160 |Online=http://www.sciencemag.org/cgi/reprint/309/5744/2160d.pdf |Format=PDF |DOI=10.1126/science.309.5744.2160d }}</ref><ref>{{Literatur |Autor=L. Moran, R. A. Horton, G. Scrimgeour, M. Perry |Titel=Principles of Biochemistry |Verlag=Pearson |Ort=Boston, MA |Datum=2011 |ISBN=978-0-321-70733-8 |Seiten=127}}</ref> Das beabsichtigte Rosten des Werks ist eine Anspielung auf die Oxygenierung im Häm.
* [[Myoglobin]] übernimmt in den Muskeln von [[Wirbeltiere]]n (inklusive Mensch) den Sauerstoff vom Hämoglobin. Sein aktives Zentrum ist ebenfalls ein Häm ''b'', allerdings ist es im Unterschied zum Hämoglobin nicht tetra- sondern monomer.
* Die britische Rockband [[Placebo (Band)|Placebo]] nahm ein Lied mit dem Titel ''Haemoglobin'' auf.
* Der französische Rapper [[MC Solaar]] veröffentlichte im Jahr 1994 eine erfolgreiche Single mit dem Titel ''La concubine de l'hémoglobine''.
* Die deutsche Melodic-Death-Metalband [[Deadlock (Band)|Deadlock]] hat auf ihrem Album „The Arrival“ ein Lied mit dem Namen „Killing The Time With Haemoglobin“ mit einer Länge von 11 Minuten.


== Siehe auch ==
* [[Hämocyanin]] ist der zweithäufigste Sauerstofftransporter in der Tierwelt und wird im Blutplasma vieler [[Arthropoden]] und [[Mollusken]] gefunden. Seine [[prosthetische Gruppe]] ist ein zweikerniger Kupfer(I)-Komplex.
* [[Cytoglobin]] gehört zur Familie der Globinproteine und wird in verschiedenen Geweben der Vertebraten exprimiert.

* [[Hämocyanin]]e, Proteine zum Sauerstofftransport in verschiedenen [[Invertebraten]] (Wirbellose) mit Kupfer als Kofaktor.
* [[Hämerythrin]] wird von einigen marinen [[Invertebraten]] sowie wenigen Arten der [[Anneliden]] verwendet, um Sauerstoff in ihren Blutzellen zu transportieren. Sein aktives Zentrum wird von zwei Eisen(II)-Ionen gebildet.
* [[Hämerythrin]]e, Proteine zum Sauerstofftransport in verschieden maritimen [[Stamm (Biologie)|Phyla]] (Stämmen) der [[Invertebraten]] (Wirbellose) mit Eisen als Kofaktor, jedoch ohne Porphyrinkomplex.

=== Weiteres ===
* [[Hämolyse]]

==Hämoglobin in Kunst und Musik==
[[Image:Hemoglobin 3up.jpg|thumb|right|450px|Die Skulptur ''Heart of Steel (Hemoglobin)'' von [[Julian Voss-Andreae]] in der Stadt Lake Oswego im US-amerikanischen Bundesstaat [[Oregon]]. Das Bild links wurde unmittelbar nach der Enthüllung aufgenommen, das mittlere Bild nach 10 Tagen und das rechte Bild, nachdem die Plastik einige Monate der Witterung ausgesetzt war.]]

Der Deutsch-Amerikanische Künstler [[Julian Voss-Andreae]] hat 2005 eine Skulptur erschaffen, die auf der Struktur des Hämoglobins beruht<ref>{{cite journal | first = Constance | last = Holden| year = 2005 | month = 30 September | title = Blood and Steel | journal = Science | volume = 309 | pages = 2160 | url = http://www.sciencemag.org/cgi/reprint/309/5744/2160d.pdf |format = pdf| doi = 10.1126/science.309.5744.2160d | ref = harv | issue=5744}}</ref><ref>{{cite book |author=Moran L, Horton RA, Scrimgeour G, Perry M |title=Principles of Biochemistry |publisher=Pearson |location=Boston, MA |year=2011 |pages=127 |isbn=0-321-70733-8 |oclc= |doi= |accessdate=}}</ref>. Das absichtsvolle Rosten des Werks reflektiert die Oxidation des Eisenatoms im Häm.

Die britische Rockband [[Placebo (Band)|Placebo]] nahm ein Lied mit dem Titel ''Haemoglobin'' auf.
Der französische Rapper [[MC Solaar]] veröffentlichte im Jahr 1994 eine erfolgreiche Single mit dem Title ''La concubine de l'hémoglobine''.
Die deutsche Melodic-Death-Metalband [[Deadlock (Band)|Deadlock]] hat auf ihrem Album "The Arrival" ein Lied mit dem Namen "Killing The Time With Haemoglobin" mit einer Länge von 11 Minuten.


== Einzelnachweise ==
== Einzelnachweise ==
Zeile 247: Zeile 248:


== Literatur ==
== Literatur ==
* M. F. Perutz: ''Stereochemistry of cooperative effects in haemoglobin.'' In: ''Nature.'' Band 228, Nummer 5273, November 1970, S.&nbsp;726–739, {{ISSN|0028-0836}}. PMID 5528785.
* M. F. Perutz: ''Stereochemistry of cooperative effects in haemoglobin.'' In: ''Nature.'' Band 228, Nummer 5273, November 1970, S.&nbsp;726–739, {{ISSN|0028-0836}}. PMID 5528785.
* L. Makowski, J. Bardhan u.&nbsp;a.: ''WAXS studies of the structural diversity of hemoglobin in solution.'' In: ''[[Journal of molecular biology]].'' Band 408, Nummer 5, Mai 2011, S.&nbsp;909–921, {{ISSN|1089-8638}}. {{DOI|10.1016/j.jmb.2011.02.062}}. PMID 21420976. {{PMC|3081904}}.
* L. Makowski, J. Bardhan u. a.: ''WAXS studies of the structural diversity of hemoglobin in solution.'' In: ''[[Journal of Molecular Biology]]'', Band 408, Nummer 5, Mai 2011, S.&nbsp;909–921, {{ISSN|1089-8638}}. [[doi:10.1016/j.jmb.2011.02.062]]. PMID 21420976. {{PMC|3081904}}.
* T. Yonetani, M. Laberge: ''Protein dynamics explain the allosteric behaviors of hemoglobin.'' In: ''[[Biochimica et biophysica acta]].'' Band 1784, Nummer 9, September 2008, S.&nbsp;1146–1158. {{DOI|10.1016/j.bbapap.2008.04.025}}. PMID 18519045. {{PMC|2668241}}. (Review).
* T. Yonetani, M. Laberge: ''Protein dynamics explain the allosteric behaviors of hemoglobin.'' In: ''[[Biochimica et biophysica acta]]'', Band 1784, Nummer 9, September 2008, S.&nbsp;1146–1158. [[doi:10.1016/j.bbapap.2008.04.025]]. PMID 18519045. {{PMC|2668241}}. (Review).
* Martin D. Vesper, Bert L. de Groot, Dennis R. Livesay: ''Collective Dynamics Underlying Allosteric Transitions in Hemoglobin.'' In: ''PLoS Computational Biology.'' Band 9, 2013, Artikel e1003232, [[doi:10.1371/journal.pcbi.1003232]].


== Weblinks ==
== Weblinks ==
{{Commonscat|Hemoglobin|Hämoglobin}}
{{Commonscat|Hemoglobin|Hämoglobin}}
{{Wiktionary}}
* [http://www.uni-saarland.de/fak8/heinzle/de/teaching/GrundPraktikum_Bioinf/V7_huettermann_skript_2006.pdf Hämoglobin (Sauerstoffbindung, Aufbau)] (PDF; 321&nbsp;kB) – Universität Saarland
* [http://proteopedia.org/wiki/index.php/Hemoglobin Interaktives 3D Modell von Hämoglobin] – Proteopedia (engl.)
* [http://proteopedia.org/wiki/index.php/Hemoglobin Interaktives 3D-Modell von Hämoglobin] – Proteopedia (engl.)
* [http://www.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/pdb41_1.html Molekül des Monats: Hämoglobin] (englisch)
* [http://www.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/pdb41_1.html Molekül des Monats: Hämoglobin] (englisch)
* Jennifer McDowall/Interpro: [http://www.ebi.ac.uk/interpro/potm/2005_10/Page1.htm Protein Of The Month: ''Haemoglobin.''] (engl.)
* Jennifer McDowall/Interpro: [http://www.ebi.ac.uk/interpro/potm/2005_10/Page1.htm Protein Of The Month: ''Haemoglobin.''] (engl.)
Zeile 262: Zeile 264:
{{SORTIERUNG:Hamoglobin}}
{{SORTIERUNG:Hamoglobin}}
[[Kategorie:Sauerstofftransporter]]
[[Kategorie:Sauerstofftransporter]]
[[Kategorie:Blutbild|Hamoglobin]]
[[Kategorie:Blutbild]]
[[Kategorie:Pigment (Biologie)|Hamoglobin]]
[[Kategorie:Pigment (Biologie)]]
[[Kategorie:Porphyrinkomplex]]
[[Kategorie:Porphyrinkomplex]]
[[Kategorie:Proteinkomplex]]
[[Kategorie:Proteinkomplex]]
[[Kategorie:Erbkrankheit-assoziiertes Protein]]
[[Kategorie:Blutbestandteil]]
[[Kategorie:Wikipedia:Artikel-Feedback/Zusätzliche Artikel]]

{{Link GA|sr}}

Aktuelle Version vom 9. Juli 2024, 20:56 Uhr

Hämoglobin α-Untereinheit
Hämoglobin α-Untereinheit
Das Hämoglobin A1 erwachsener Menschen besteht aus 2 α-Ketten (rot) und 2 β-Ketten (blau) mit 4 Häm-Gruppen (grün), die je ein O2-Molekül binden können (Modell nach PDB 1GZX)

Vorhandene Strukturdaten: UniProt-Eintrag

Masse/Länge Primärstruktur 16 kDa je Untereinheit; α-Kette 141, β-Kette 146 Aminosäuren
Kofaktor Häm
Bezeichner
Gen-Name(n) HBA1, HBA2
Externe IDs
Vorkommen
Homologie-Familie Beta-2 Globin
Übergeordnetes Taxon Wirbeltiere

Hämoglobin β-Untereinheit
Hämoglobin β-Untereinheit
Kugelmodell der Häm-Tasche der Hämoglobin β-Untereinheit mit Häm, Eisen (grün) und Disauerstoff, nach PDB 1GZX

Vorhandene Strukturdaten: UniProt-Eintrag

Eigenschaften des menschlichen Proteins
Masse/Länge Primärstruktur 146 Aminosäuren
Kofaktor Häm
Bezeichner
Gen-Name HBB
Externe IDs
Vorkommen
Homologie-Familie Beta-2 Globin
Übergeordnetes Taxon Wirbeltiere

Übergeordnet
Zytosol
Gene Ontology
QuickGO

Hämoglobin (von altgriechisch αἷμα haíma, „Blut“, und lateinisch globus, „Klumpen, Ballen“), Abkürzung Hb, ist der eisenhaltige Proteinkomplex, der als Blutfarbstoff in den roten Blutkörperchen von Wirbeltieren enthalten ist, Sauerstoff bindet und diesen so im Blutkreislauf transportiert.

Das Hämoglobin von Säugetieren ist ein Tetramer, es besteht aus vier Globinen als Untereinheiten. Beim erwachsenen Menschen sind dies je zwei Hb α und Hb β im Hämoglobin A (Hb A0), der häufigsten Form. Die vier den Komplex bildenden Proteine sind Aminosäureketten (α-Kette 141 AS; β-Kette 146 AS) in der für Globine typischen Faltung mit jeweils einer Tasche, in der ein Eisen-II-Komplex, das Häm, gebunden ist. Dessen Eisenion vermag ein Sauerstoffmolekül zu binden. Dabei ändert sich die Farbe des Häms von dunkel- zu hellrot. Die Bindungsstärke hängt empfindlich von der Konformation der Proteinumgebung des Häms ab. Wechselwirkungen zwischen den vier Globinen begünstigen die beiden extremen Zustände, in denen der Gesamtkomplex entweder mit vier Molekülen Sauerstoff gesättigt ist (in der Lunge bzw. den Kiemen) oder allen Sauerstoff abgegeben hat. Wechselwirkungen mit anderen Molekülen unterstützen die Beladung wie die Entladung.

Zum Vorkommen von Hämoglobin und ähnlicher Globine im Tierreich siehe Sauerstofftransporter.

Geschichte

Das Sauerstofftransportprotein Hämoglobin wurde 1840 von Friedrich Ludwig Hünefeld entdeckt.[1] 1851 beschrieb Otto Funke die Kristallisation von Hämoglobin durch Verdünnen von Tierblut mit Wasser, Ethanol oder Diethylether und anschließendem langsamen Verdampfen des Lösungsmittels aus der erhaltenen Proteinlösung („Funkesche Kristalle“).[2] Über die reversible Oxygenierung des Hämoglobins wurde 1866 erstmals von Felix Hoppe-Seyler berichtet.[3][4] Von ihm stammt auch der Name Hämoglobin. Die Strukturformel des Häms (bzw. des korrespondierenden Hämins), also des eisenhaltigen Porphyrinkomplexes, formulierte bereits 1912 der deutsche Chemiker William Küster,[5] der Nachweis der Richtigkeit dieser Strukturformel gelang dem Chemiker Hans Fischer 1928 durch die vollständige Synthese des Hämins. 1930 wurde er dafür mit dem Nobelpreis für Chemie ausgezeichnet. Das Hämoglobin ist eines der bestuntersuchten Proteine, seine Struktur wurde als eine der ersten überhaupt von Max Perutz et al. 1959 mit Hilfe der Röntgenkristallographie ermittelt.[6][7][8][9] Für diese Arbeiten bekam er 1962 zusammen mit John Kendrew den Nobelpreis für Chemie.

Struktur

Nichtmodifizierte Grundstruktur

Säuger-Hämoglobine bestehen aus vier Untereinheiten, je zwei vom α- und zwei vom β-Typ. In jeder dieser Untereinheiten ist jeweils eine prosthetische Gruppe, an der die Sauerstoffbindung stattfindet, eingebettet. Ein Hämoglobinkomplex-Molekül kann also vier Sauerstoffmoleküle binden. Die prosthetische Gruppe der sauerstofffreien Form ist ein Eisen(II)-Komplex des Protoporphyrins IX, welches die vier äquatorialen Positionen des Eisenions besetzt. Das Eisenion befindet sich in einem high-spin-Zustand und ist daher etwas zu groß, um in das Loch des Porphyrins zu passen. Es befindet sich also etwas unterhalb der Ringebene. Dieses Häm b ist über die axiale Position des Eisenions auf der Unterseite über einen proximalen Histidinrest an die Proteinmatrix gebunden. Die zweite axiale Position auf der Oberseite ist unbesetzt und steht für die Anbindung des Sauerstoffmoleküls zur Verfügung.

Posttranslationale Modifikationen

Neben verschiedenen seltenen Modifikationen einzelner Aminosäuren in den Hämoglobin-Untereinheiten des Menschen tritt häufig die Glykation beider Untereinheiten an speziellen Aminosäuren auf. Dies ist die Folge einer hohen Glucosekonzentration im Blut und kann daher in der Labordiagnostik verwendet werden, um den durchschnittlichen Blutzuckerspiegel der letzten Monate zu ermitteln.

Bei der Glykation des Hämoglobins wird Glucose kovalent an Lysin-8, -17, -41, -62 der α-Untereinheit, sowie Valin-2, Lysin-9, -18, -67, -121 oder -145 der β-Untereinheit gebunden. Ist ein glykiertes β-Hämoglobin an Valin-2 modifiziert und hat sich der Glucoserest über ein Aldimin und eine Amadori-Umlagerung zu einem stabilen Ketoamin gewandelt, wird es als HbA1c bezeichnet.[10][11]

Sauerstofftransport

Leistungsfähigkeit

Die Sauerstoffbindungskurve (auch Sättigungskurve) zeigt den charakteristischen sigmoidalen (S-förmigen) Verlauf. Man vergleiche den hiergegenüber hyperbolischen Verlauf der Sättigungskurve des Myoglobins.[12]

Hämoglobin ist ein globuläres Protein mit sehr guter Löslichkeit in Wasser (Löslichkeit bis zu 5 mmol/l Hämoglobin (34 %)). 1 g Hb kann in vitro 1,389 ml Sauerstoff binden, in vivo jedoch nur 1,34 ml (Hüfnersche Zahl), somit können 100 ml Blut, die etwa 15 g Hb enthalten, bei 100-prozentiger Sättigung bis zu 15 × 1,34 ml = 20,1 ml Sauerstoff aufnehmen.

Auffällig ist der sigmoidale (S-förmige) Verlauf der Bindungskurve. Normalerweise würde man erwarten, dass die Sauerstoffbeladung mit steigendem Sauerstoffpartialdruck wie beim Myoglobin zunächst stark und dann immer langsamer zunimmt (hyperbolischer Verlauf). Für Hämoglobin verläuft die Sauerstoffbindungskurve im Bereich des in der Lunge herrschenden Sauerstoffpartialdrucks ungewöhnlich flach und im Bereich des im Gewebe herrschenden Sauerstoffpartialdrucks ungewöhnlich steil. Der flache Verlauf der Bindungskurve im Endteil verhindert einen stärkeren Abfall der Sauerstoffsättigung im Alter, bei Lungenfunktionsstörungen und in Höhenlagen, und der steilere Verlauf im Mittelteil sorgt dafür, dass bei einem sinkenden venösen Sauerstoffpartialdruck viel Sauerstoff abgegeben wird.[13][14]

Normbereich

Für das beim Erwachsenen überwiegende sogenannte „adulte Hämoglobin“ (siehe unten) wurde ein Normbereich festgelegt. Für Kinder gelten andere Normwerte.

Als Normalbereich wird der Bereich bezeichnet, in dem die Hb-Werte von 96 Prozent aller gesunden Menschen liegen.

Hämoglobin bei Menschen
g/dl
(alte Einheit)
mmol/dm³
(SI-Einheit)
Männer 13,5–17,5 8,4–10,9
Frauen 12–16 7,4–9,9
Neugeborene 19 11,8

Ein erhöhter Hämoglobin-Wert bedeutet meistens auch eine erhöhte Erythrozyten-Anzahl (Polyglobulie) und kann z. B. bei Aufenthalt in großen Höhen (Sauerstoffmangel) oder durch Flüssigkeitsverlust auftreten. Bei unklarer Ursache ist auch abzuklären, ob es sich bei stark erhöhten Werten um die Erkrankung Polycythaemia vera handelt.

Ein verringerter Hämoglobin-Wert wird als Anämie bezeichnet, eine verminderte Beladung der roten Blutkörperchen mit Hämoglobin als Hypochromasie.

Ein erhöhter/verringerter Hämoglobin-Wert ist immer abhängig vom Normalwert. Liegt der Normalwert bei 10,9 mmol/l, dann kann ein Wert von 8,4 mmol/l schon zu Symptomen von Anämie führen. Liegt der Normalwert bei 9 mmol/l, dann treten bei 8,4 mmol/l noch keine Symptome auf.

Die Höhe des Hämoglobinwertes ist maßgeblich bei der Zulassung zur Blutspende. Männer müssen einen Mindestwert von 8,4 mmol/l (13,5 g/dl), Frauen einen von 7,8 mmol/l (12,5 g/dl) aufweisen, um vom Spendearzt zugelassen zu werden. Bestimmt wird der Hb-Wert mittels elektronisch messender Hb-Photometer. Aktuelle Informationen des DRK-Blutspendedienstes besagen, dass Männer mit einem Hb von >11,2 mmol/l (18,0 g/dl) nicht mehr zur Spende zugelassen werden (12/2006). Dies ist jedoch nicht in allen Bundesländern der Fall, bei erhöhtem Hb-Wert wird weitere Flüssigkeitsaufnahme vor der Spende empfohlen.

Hämoglobinbestimmung

Ein erster, von William Richard Gowers entwickelter Apparat zur Bestimmung des Hämoglobingehaltes des Blutes stand 1879 zur Verfügung und wurde 1902 von Hermann Sahli verbessert.[15] Die Bestimmung des Hämoglobingehalts, genannt auch Hämoglobinbestimmung, basiert auf dem Nachweis der Hämgruppen des Proteins. Daher wird als molare Hämoglobinkonzentration traditionell (so auch hier) die Konzentration der einzelnen Untereinheiten (mittlere molare Masse: 16114,5 g/mol) angegeben.[16] Der Umrechenfaktor von g/dl zu mmol/l beträgt hierfür also 0,6206. Nach IUPAC und DIN 58931 wird die so berechnete (monomere) Hämoglobinkonzentration mit Hb(Fe) bezeichnet.[16] Da ein Hämoglobinkomplex-Molekül aus 4 Untereinheiten mit je einer Hämgruppe besteht, müssen die in mmol/l angegebenen Werte durch 4 geteilt werden, um die Konzentration des Hämoglobin-Tetramers (nach IUPAC und DIN 58931 mit Hb bezeichnet) zu erhalten (molare Masse: 64458 g/mol).[16] Der Umrechenfaktor von g/dl in mmol/l beträgt hierfür also 0,1551. Die in g/dl angegebenen Werte bleiben jeweils unverändert.

Sauerstoffbindung durch Hämoglobine auf molekularer Ebene

O2-Bindung: Verlagerung des Zentralatoms FeII in die Ringebene
O2-Bindung: H-Brückenbindung mit der Seitenkette von (distalem) Histidin (nicht gezeigt: das proximale Histidin, siehe Abbildung oben)

Bei der Bindung von Sauerstoff wird ein Disauerstoffmolekül (O2) in das Zentrum des Häm-Komplexes aufgenommen. Das Atom des zentralen Eisenions (FeII) geht durch die Sauerstoffbindung in einen low-spin-Zustand über. Dabei verringert sich seine Größe und es rutscht in die Ebene des Porphyrinrings.

Stabilisiert wird das gebundene Sauerstoffmolekül über eine Wasserstoffbrücke. Diese wird mit der Seitenkette des Globinproteins gebildet: einem distal gelegenen Histidinrest, der sich in der Nähe des Zentralatoms befindet. Jener proximale Histidinrest, über den das Eisenatom des Häms an die Proteinmatrix gebunden ist, liegt auf der anderen Seite der Ringebene.

Kooperativer Effekt bei der Sauerstoffbindung

Ein Hämoglobin, das aus vier Hb-Untereinheiten besteht, kann vier Sauerstoffmoleküle binden. Aus rein statistischen Erwägungen wäre zu erwarten, dass das Bestreben, weitere Sauerstoffmoleküle zu binden, mit jedem bereits gebundenen Sauerstoffmolekül abnimmt. Untersuchungen haben jedoch gezeigt, dass das Gegenteil der Fall ist und die Sauerstoffaffinität mit steigender Beladung zunimmt (positive Kooperativität).[17][18]

pH-Wert-Abhängigkeit der Sauerstoffbindung

Das Gleichgewicht zwischen R- und T-Form ist pH-abhängig (Bohr-Effekt) und wird bei einem niedrigen pH-Wert durch Protonierung zugunsten der weniger sauerstoffaffinen T-Form verschoben. Denselben Effekt hat ein hoher CO2 -Partialdruck durch eine reversible Carboxylierung der Untereinheiten. Dies führt dazu, dass hohe Protonen- und Kohlenstoffdioxid-Konzentrationen, wie sie z. B. durch Zellatmung und Milchsäuregärung im arbeitenden Muskel herrschen, eine vollständige Entladung des Hämoglobins begünstigen.

Konkurrenz zwischen Sauerstoff und Kohlenstoffmonoxid

Kohlenstoffmonoxid (CO) ist sehr giftig, da es mit dem Sauerstoff um die axialen Koordinationsstellen der Eisenzentren konkurriert. Einmal gebunden, kann CO z. B. lediglich durch Sauerstoffdruckbehandlung in einer Druckkammer verdrängt werden – es blockiert also Bindungsstellen für Sauerstoff. Bei starken Rauchern sind bis zu 10 Prozent des Hämoglobins mit CO besetzt.
An das freie Häm b bindet Kohlenstoffmonoxid 25000 Mal stärker als Disauerstoff, im Hämoglobin dagegen nur etwa 200 Mal. Die Ursache für die verringerte CO-Affinität ist, dass aufgrund des Raumbedarfes des distalen Histidins die vom Kohlenstoffmonoxid bevorzugte lineare Fe-CO-Koordination nicht möglich ist.

Effekte, welche die Sauerstoffbindung beeinflussen

Die Sauerstoffbindungskurve wird auf der Abszisse nach rechts verschoben durch:

Die Rechtsverschiebung führt dazu, dass das Hämoglobin leichter Sauerstoff abgibt. Ein Beispiel: Ein arbeitender Muskel verbraucht sehr viel Sauerstoff für die Kontraktion. Da er die Energie zum Teil in Wärme umsetzt, steigt in der arbeitenden Muskulatur die Temperatur an. Außerdem setzt er Milchsäure frei, der pH-Wert sinkt. Durch den gesteigerten Stoffwechsel entsteht vermehrt Kohlenstoffdioxid: durch die lokalen Effekte kann die Muskulatur mehr Sauerstoff aus dem Blut entnehmen.

  • Die Muskulatur verfügt über Myoglobin (siehe unten), das eine höhere Affinität zu Sauerstoff besitzt (Sauerstoff stärker anzieht). Es dient als Sauerstoff-Speicher.

Die Sauerstoffbindungskurve wird auf der Abszisse nach links verschoben durch:

Die Linksverschiebung führt dazu, dass Hämoglobin Sauerstoff stärker bindet. Dies macht man sich z. B. bei Herzoperationen zunutze, indem man den Patienten unterkühlt, um sein Blut maximal mit Sauerstoff zu sättigen. Tiere, die Winterschlaf halten, profitieren ebenfalls von diesem Effekt. In den Lungen wird ein Teil des Kohlendioxids im Zuge der Ausatmung abgegeben – das Hb kann wieder leichter mit Sauerstoff beladen werden.

Das im Rapoport-Luebering-Zyklus (Nebenweg der Glycolyse) durch das Enzym Bisphosphoglyceratmutase gebildete 2,3-Bisphosphoglycerat ist das wichtigste Intermediat der Glykolyse in den roten Blutkörperchen. Es bindet an Hämoglobin und verursacht einen allosterischen Effekt; die Abnahme der Affinität des Hämoglobins zum Sauerstoff. Es ist lebenswichtig, um die Abgabe von Sauerstoff im Organismus zu ermöglichen. Unter physiologischen Bedingungen liegt 2,3-BPG in den roten Blutkörperchen etwa in derselben Konzentration wie Hämoglobin vor. Eine Erhöhung der 2,3-BPG-Konzentration ist z. B. bei der Höhenanpassung zu beobachten. Sinn dieser Regulation ist folgender: Ist die Sauerstoffsättigung im Blut durch die „dünne Luft“ in großer Höhe vermindert, gibt Hb den gebundenen Sauerstoff an die Verbraucher schlechter ab als bei hoher Sättigung (siehe Bindungskurve). Trotzdem muss die Versorgung aller Organe mit O2 gewährleistet sein. Hb muss also weniger affin zum Sauerstoff werden, um die Peripherie ausreichend zu versorgen.

Hämoglobin-Typen

In verschiedenen Lebensphasen (Embryonalphase, Fetalphase und nach der Geburt, d. h. „adulte Phase“) sind beim Menschen verschiedene Hämoglobine zu finden. Diese Hämoglobine unterscheiden sich in ihrer Affinität für Sauerstoff. Sie bestehen aus jeweils vier Untereinheiten in paarweise verschiedener Zusammensetzung.

Synthese der verschiedenen Hämoglobinketten und deren Bildungsorte während der Schwangerschaft und perinatal

Entwicklungsgeschichtlich sind die unterschiedlichen Untereinheiten des Hämoglobins durch Genduplikationen des Globin-Gens entstanden. Die Kombinationen dieser Untereinheiten als Tetramer werden je nach Sauerstoffbedarf zu unterschiedlichen Zeitpunkten synthetisiert, beispielsweise um als Fötus im Mutterleib Sauerstoff aus dem mütterlichen Blut zu erhalten.

Während der Schwangerschaft wird Sauerstoff durch die Plazenta (Mutterkuchen) zum Fötus transportiert, den dieser dann effizient aufnimmt. Dies wird dadurch gewährleistet, dass die embryonalen und fetalen Hämoglobin-Typen eine deutlich höhere Sauerstoff-Bindungsaffinität haben als das später nachgeburtlich gebildete adulte Hämoglobin. Außerdem ist der Hämatokrit im Vergleich zur Mutter stark erhöht. Auf diese Weise gelangt durch die Nabelschnur genug Sauerstoff zum Fötus.

Embryonale Hämoglobine

Die embryonalen Hämoglobine werden in der Embryonalphase, den ersten 8 Wochen nach der Befruchtung, in Blutinseln des Dottersacks gebildet und tragen Eigennamen:

  • Gower-12ε2) („zeta-epsilon“)
  • Gower-22ε2) („alpha-epsilon“)
  • Portland-12γ2) („zeta-gamma“)
  • Portland-22β2) („zeta-beta“)

Fetale Hämoglobine

Als fetales Hämoglobin wird das während der Fetalperiode (ab der 9. Woche nach Befruchtung bis zur Geburt) vorwiegend gebildete Hämoglobin F (HbF) bezeichnet. Die Synthese des fetalen Hämoglobins beginnt schon in der vorangehenden Embryonalphase und wird auch nicht sofort nach der Geburt gestoppt, sondern hält noch einige Monate an. Bildungsort sind Leber und Milz. Es hat eine viel höhere Sauerstoffaffinität als adultes Hämoglobin, um den Sauerstoff aus dem mütterlichen Blut aufzunehmen.

  • Hämoglobin F (α2γ2) – Im Fötus das dominierende Hämoglobin, bei gesunden Erwachsenen nur in Spuren nachweisbar

Adulte Hämoglobine

Als adulte Hämoglobine gelten Hämoglobin A (α2β2; HbA0 [früher Hb A1 genannt, die Bezeichnung HbA1c steht für eine glykierte Form][19]) und Hämoglobin A22δ2; HbA2). Die Synthese der adulten Hämoglobine beginnt schon im Fetus und ersetzt dann in den ersten Monaten nach Geburt das fetale Hämoglobin. Bildungsort ist das Knochenmark. Während des ersten Lebensjahres wird die Expression des γ-Gens abgesenkt und die des β-Gens erhöht.[20] Der Transkriptionsfaktor BCL11A ist der entscheidende Repressor des γ-Globins beim Erwachsenen.[21] Daher ist fetales Hämoglobin beim Erwachsenen nur in Spuren nachweisbar.

  • Hämoglobin A (α2β2) – 98 %
  • Hämoglobin A22δ2) – 2 %.

Glykohämoglobine

Glykohämoglobine entstehen durch Bindung von Glucose an Aminogruppen der Globine. Dies geschieht unter physiologischen Bedingungen nicht-enzymatisch durch den Kontakt des Hämoglobins mit dem Blutzucker (Glykierung). Die Hauptkomponente HbA0 des Hämoglobins A wird dabei vorwiegend in HbA1c umgewandelt, bei dem Glucose an die N-terminale Aminosäure Valin der β-Kette gebunden vorliegt. Der jeweilige Anteil von HbA1c am Gesamthämoglobin wird als Hinweis auf die durchschnittliche Blutzuckerhöhe der vergangenen Wochen interpretiert.

Methämoglobin

Methämoglobin (Met-Hb) ist eine deaktivierte, nicht sauerstoffaffine Form des Hämoglobins, in der das Eisenion sich in der Oxidationsstufe III statt II befindet. Das NADH-abhängige Enzym Methämoglobin-Reduktase (Diaphorase I) ist in der Lage, Methämoglobin wieder in Hämoglobin zu überführen. In der Regel liegen beim Menschen zwei Prozent des Hämoglobins als Methämoglobin vor. Ein höherer Anteil kann entweder genetisch bedingt oder Folge einer Vergiftung sein. Ein hoher Methämoglobinanteil hat eine mangelhafte Sauerstoffversorgung des Organismus zur Folge.

Abbau von Hämoglobin

Wenn die roten Blutkörperchen das Ende ihres Lebens (etwa 120 Tage) erreicht haben, werden sie in den mononukleären Phagozyten hauptsächlich in der Milz (und bei hohem Anfall von abzubauendem Hämoglobin auch in der Leber und im Knochenmark) abgebaut. Der Abbauprozess beginnt in der Milz und wird in der Leber fortgesetzt. Zuerst wird der Globinanteil vom Häm getrennt und zu Aminosäuren degradiert. Das Häm wird über eine Cytochrom-P450-abhängige Oxygenase (Hämooxygenase) zu Biliverdin gespalten, wobei Eisen (Fe2+) und Kohlenmonoxid frei werden. Das Eisen wird von den Makrophagen an das im Blut vorhandene Transportprotein Transferrin abgegeben. Die Biliverdin-Reduktase wandelt schließlich das grünliche Biliverdin in Bilirubin um. Dieses wird ins Blut abgegeben und an Albumin gekoppelt (da es schlecht wasserlöslich ist) und zur Leber transportiert. Hier wird das Bilirubin zweifach mit Glucuronsäure konjugiert und somit löslich gemacht – es kann nun mit der Galle in den Darm abgegeben und über den Stuhl ausgeschieden werden. Im Darm sorgen Bakterien dafür, dass die Glucuronsäure teilweise wieder gespalten wird, und auf diese Weise das orangefarbene Bilirubin reduziert wird zu farblosem Urobilinogen und zu braunem Sterkobilinogen. Ein geringer Anteil dieses reduzierten Bilirubins wird wieder über den Darm aufgenommen (enterohepatischer Kreislauf) und über die Niere ausgeschieden (gelbe Farbe des Urins). Verschiedene Lebererkrankungen wie die Leberentzündung (Hepatitis) oder Abflussbehinderungen in der Gallenblase (Gallensteine) führen zu einer erhöhten Bilirubinkonzentration. Bilirubin ist der Farbstoff, der bei Einlagerung in die Haut zur so genannten Gelbsucht (Ikterus = Gelbfärbung der Haut und Lederhaut (Sclera) der Augen) führt.

Rolle bei Krankheiten

Mutationen im HBA1-Gen können zu Defekten der α-Untereinheit und diese zu Heinz-Körper-Anämie und zur α-Thalassämie führen. Mutationen im HBB-Gen können die Ursache für Heinz-Körper-Anämie, β-Thalassämie und Sichelzellenanämie werden. Manche Varianten der HBG1/HBG2-Gene können Neugeborenengelbsucht verursachen.[22]

Reduzierte Hämoglobinwerte, mit oder ohne Reduktion der Zahl von roten Blutkörperchen, führen zu den Symptomen einer Anämie. Es gibt viele Ursachen für eine Anämie, wobei Eisenmangel der häufigste Grund in der westlichen Welt sein dürfte. Durch Eisenmangel wird die Häm-Synthese gehemmt. Als Folge sind die roten Blutkörperchen hypochrom (ohne die rote Farbe) und mikrozytisch (kleiner als normal).

Bei einer Hämolyse (verstärkter Abbau von roten Blutkörperchen) tritt ein Ikterus auf, verursacht durch den Hämoglobin-Metabolit Bilirubin. Bis zu einer Menge von 135 mg/dl wird in den Blutgefäßen freigesetztes Hämoglobin an Haptoglobin gebunden, bei einem stärkeren Blutzerfall kommt es zum Auftreten von freiem Hämoglobin im Blut (Hämoglobinämie).[23]

Eine Gruppe von genetischen Defekten, bekannt als Porphyrien, führen zu einer Störung der Hämsynthese. Durch die Anreicherung von Häm-Vorstufen kommt es unter anderem zu Lichtempfindlichkeit, Abdominalschmerzen und neurologischen Problemen sowie zur Porphyrinurie.

Bei der Methämoglobinämie wird das in den roten Blutkörperchen vorhandene Hämoglobin, das dem Sauerstofftransport dient, in das funktionsunfähige Methämoglobin umgewandelt und steht damit nicht mehr für den Sauerstofftransport zur Verfügung. Die Ursache dafür kann erblich bedingt sein (kongenitale Methämoglobinämie) oder durch Giftstoffe ausgelöst werden.

Mutationen in den Globinketten sind mit verschiedenen Hämoglobinopathien verbunden, wie die Sichelzellenanämie und Thalassämie.

Die Erreger der Malaria spalten Hämoglobin in von ihnen infizierten roten Blutkörperchen, um daraus Proteine für ihren eigenen Stoffwechsel zu gewinnen. Aus dem Häm entsteht dabei Hämozoin, das vom Parasiten kristallisiert wird und unter dem Mikroskop in den infizierten Erythrozyten als Pigment erkennbar ist. Das Malaria-Medikament Chloroquin hemmt diese Kristallisierung und der Parasit wird durch das Häm vergiftet.

Nachweis

Der Nachweis von Hämoglobin erfolgt durch den Teichmann-Test, bei dem Blut vorsichtig mit Kochsalz und Eisessig erwärmt wird, wobei sich Hämin (Teichmann-Kristalle) abscheidet, oder mit der Luminolreaktion, bei der eine Lösung aus Luminol sowie Natronlauge und eine Lösung aus Wasserstoffperoxid verwendet wird. Diese Reaktion findet nur in Anwesenheit eines Katalysators statt, im Nachweisfalle von Hämoglobin wäre dieser das Eisen(II)-Ion im Häm-Komplex.

Hämoglobin in Kunst und Musik

Die Skulptur Heart of Steel (Hemoglobin) von Julian Voss-Andreae in der Stadt Lake Oswego im US-amerikanischen Bundesstaat Oregon. Das Bild links wurde unmittelbar nach der Enthüllung aufgenommen, das mittlere Bild nach 10 Tagen und das rechte Bild, nachdem die Plastik einige Monate der Witterung ausgesetzt war.
  • Der deutsch-amerikanische Künstler Julian Voss-Andreae hat 2005 eine Skulptur geschaffen, die auf der Struktur des Hämoglobins beruht.[24][25] Das beabsichtigte Rosten des Werks ist eine Anspielung auf die Oxygenierung im Häm.
  • Die britische Rockband Placebo nahm ein Lied mit dem Titel Haemoglobin auf.
  • Der französische Rapper MC Solaar veröffentlichte im Jahr 1994 eine erfolgreiche Single mit dem Titel La concubine de l'hémoglobine.
  • Die deutsche Melodic-Death-Metalband Deadlock hat auf ihrem Album „The Arrival“ ein Lied mit dem Namen „Killing The Time With Haemoglobin“ mit einer Länge von 11 Minuten.

Siehe auch

  • Cytoglobin gehört zur Familie der Globinproteine und wird in verschiedenen Geweben der Vertebraten exprimiert.
  • Hämocyanine, Proteine zum Sauerstofftransport in verschiedenen Invertebraten (Wirbellose) mit Kupfer als Kofaktor.
  • Hämerythrine, Proteine zum Sauerstofftransport in verschieden maritimen Phyla (Stämmen) der Invertebraten (Wirbellose) mit Eisen als Kofaktor, jedoch ohne Porphyrinkomplex.

Einzelnachweise

  1. Friedrich Ludwig Hünefeld: Der Chemismus in der thierischen Organisation. Brockhaus, 1840 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. A NASA Recipe For Protein Crystallography. (PDF; 782 kB) In: Educational Brief. National Aeronautics and Space Administration, archiviert vom Original (nicht mehr online verfügbar) am 22. September 2020; abgerufen am 2. Februar 2016.
  3. F. Hoppe-Seyler: Über die oxydation in lebendem blute. In: Med-chem Untersuch Lab. Band 1, 1866, S. 133–140.
  4. Georg Hoppe-Seyler: Felix Hoppe-Seyler – Arzt und Naturwissenschaftler (Memento vom 24. September 2020 im Internet Archive).
  5. William Küster: Beiträge zur Kenntnis des Bilirubins und Hämins. In: Hoppe-Seylers Zeitschrift für Physiologische Chemie. Nr. 82, 1912, S. 463 ff.
  6. M. F. Perutz, M. G. Rossmann, A. F. Cullis, H. Muirhead, G. Will, A. C. T. North: Structure of H. In: Nature. Band 185, Nr. 4711, 1960, S. 416–422, doi:10.1038/185416a0, PMID 18990801.
  7. M. F. Perutz: Structure of hemoglobin. In: Brookhaven symposia in biology. Band 13, November 1960, ISSN 0068-2799, S. 165–183, PMID 13734651.
  8. M. F. Perutz, H. Muirhead, J. M. Cox u. a.: Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution: (1) x-ray analysis. In: Nature. Band 219, Nr. 5149, Juli 1968, S. 29–32, doi:10.1038/219029a0, PMID 5659617.
  9. M. F. Perutz, H. Muirhead, J. M. Cox, L. C. Goaman: Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution: the atomic model. In: Nature. Band 219, Nr. 5150, Juli 1968, S. 131–139, PMID 5659637.
  10. HbA1c and Glycated Hemoglobin (Memento vom 29. Januar 2012 im Internet Archive) Canterbury Scientific.
  11. UniProt P69905, UniProt P68871
  12. J. M. Berg, J. L. Tymoczko, L. Stryer: Biochemie. 6. Auflage. Spektrum Akademischer Verlag, München 2007, ISBN 978-3-8274-1800-5, S. 208ff.
  13. Robert F. Schmidt, Gerhard Thews (Hrsg.): Physiologie des Menschen. 25. Auflage. Springer-Verlag, Berlin 1993, ISBN 3-541-02636-7, S. 616–620.
  14. Erich Schütz, Heinz Caspers, Erwin-Josef Speckmann (Hrsg.): Physiologie. 16. Auflage. Urban & Schwarzberg, München 1982, ISBN 3-540-57104-3, S. 86–87.
  15. Paul Diepgen, Heinz Goerke: Aschoff/Diepgen/Goerke: Kurze Übersichtstabelle zur Geschichte der Medizin. 7., neubearbeitete Auflage. Springer, Berlin/Göttingen/Heidelberg 1960, S. 49.
  16. a b c R. Zander, W. Lang, P. Lodemann: Das Molekulargewicht des Hämoglobins. Abgerufen am 13. August 2013.
  17. G. S. Adair: The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin. In: J Biol Chem. Band 63, 1925, S. 529–545.
  18. D. E. Koshland, G. Némethy, D. Filmer: Comparison of experimental binding data and theoretical models in proteins containing subunits. In: Biochemistry. Band 5, Nummer 1, Januar 1966, S. 365–385, ISSN 0006-2960. PMID 5938952.
  19. Pschyrembel Online. Abgerufen am 29. Juli 2021.
  20. Hemoglobinopathies in the Fetal Position | NEJM. Abgerufen am 31. Januar 2019 (englisch).
  21. Vijay G. Sankaran, Tobias F. Menne, Jian Xu, Thomas E. Akie, Guillaume Lettre: Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. In: Science (New York, N.Y.). Band 322, Nr. 5909, 19. Dezember 2008, ISSN 1095-9203, S. 1839–1842, doi:10.1126/science.1165409, PMID 19056937.
  22. UniProt P69905, UniProt P68871, UniProt P69891
  23. Wolfgang Piper: Innere Medizin. 2. Auflage. Springer, Berlin 2002, ISBN 978-3-642-33108-4, S. 639–640.
  24. Constance Holden: Blood and Steel. In: Science. Band 309, Nr. 5744, 30. September 2005, S. 2160, doi:10.1126/science.309.5744.2160d (sciencemag.org [PDF]).
  25. L. Moran, R. A. Horton, G. Scrimgeour, M. Perry: Principles of Biochemistry. Pearson, Boston, MA 2011, ISBN 978-0-321-70733-8, S. 127.

Literatur

Commons: Hämoglobin – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Hämoglobin – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen