„Vakuumfluktuation“ – Versionsunterschied

[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
Quellen ergänzt
K →‎Der Casimir-Effekt: Originalarbeit
 
(18 dazwischenliegende Versionen von 11 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
[[Datei:Tomonaga.jpg|mini|hochkant|Pionier der Vakuumfluktuation [[Shin’ichirō Tomonaga]] (1965)]]
'''Vakuumfluktuationen''', '''[[Quant]]en-''' und '''Nullpunkts[[fluktuation]]''', sind Begriffe, die in Zusammenhang mit der [[Quantenfeldtheorie]] verwendet werden. Sie ist eng verwandt mit der [[Vakuumpolarisation]]. Hergeleitet wird der Begriff gelegentlich aus der quantenmechanischen [[Energie-Zeit-Unschärferelation]]. Häufig wird er mit [[Virtuelles Teilchen|virtuellen Teilchen]] in Verbindung gebracht.[[Datei:Tomonaga.jpg|mini|Pionier der Vakuumfluktuation [[Shin’ichirō Tomonaga]] (1965)]]

'''Vakuumfluktuation''' bzw. '''Quantenfluktuation''', '''Vakuumpolarisation''' und '''virtuelles Teilchen''' sind Begriffe aus der [[Quantenfeldtheorie]]. Sie bezeichnen bestimmte mathematische Ausdrücke, die in den Summanden einer [[Reihe (Mathematik)|Reihe]] auftauchen, wenn eine [[Energie]] oder eine [[Störungstheorie (Quantenmechanik)#Übergangsrate in erster Ordnung („Fermis Goldene Regel“)|Übergangsamplitude]] mit den Mitteln der quantenmechanischen [[Störungstheorie (Quantenfeldtheorie)|Störungstheorie]] berechnet wird. Zwecks besserer Veranschaulichung beschreibt man diese Ausdrücke so, als ob die darin vorkommenden [[Erzeugungs- und Vernichtungsoperator#Erzeugungs- und Vernichtungsoperatoren in Quantenfeldtheorien|Erzeugungs- und Vernichtungsoperatoren]] und weitere [[Multiplikation #Namensgebung|Faktoren]] für wirklich in der Zeit ablaufende Prozesse stünden. Gelegentlich wird diese Sprechweise aus der quantenmechanischen [[Energie-Zeit-Unschärferelation]] heraus begründet in dem Sinne, dass sie für unbeobachtbar kurze Zeit erlaubt seien.<ref>{{Literatur |Autor=J. R. Aitchison |Titel=Nothing`s plenty. The vacuum in modern quantum field theory |Sammelwerk=Contemporary Physics |Band=26 |Auflage=4. |Verlag=Tailor and Franzis |Datum=2006-08 |Seiten=333-391 |DOI=10.1080/00107518508219107}}</ref> Zu beachten ist, dass mit ''Vakuum'' in diesem Zusammenhang nicht der von jeglicher Materie und Energie entleerte Raum gemeint ist, sondern der [[Zustand (Quantenmechanik)|quantenmechanische Zustand]] niedrigst möglicher Energie ([[Grundzustand]]). Als [[Energieeigenzustand]] zeigt er keinerlei beobachtbare zeitliche Veränderung, insbesondere keine zeitliche Fluktuation. Dass er der Zustand niedrigst möglicher Energie ist, bedeutet hier, dass man z.&nbsp;B. kein wirklich nachweisbares Teilchen (oder Energiequant) daraus entfernen kann.

Die in ähnlichem Zusammenhang oft auftauchenden Begriffe ''Nullpunktsschwingung'' und ''[[Nullpunktsenergie]]'' bezeichnen hingegen oft eindeutig beobachtbare Tatsachen wie z.&nbsp;B. messbar veränderte Reaktionsenergie. Diese beruhen auf der in der Quantenphysik gültigen [[Heisenbergsche Unschärferelation|Orts-Impuls-Unschärferelation]].


== Begriffsentstehung in der Quantenfeldtheorie ==
== Begriffsentstehung in der Quantenfeldtheorie ==
In der Physik versteht man unter [[Fluktuation]] die zufällige Änderung einer näherungsweise konstanten Systemgröße. In diesem Sinne ist jedoch die Vakuumfluktuation ''nicht'' zu verstehen. Das [[Vakuum]] ist in Raum und Zeit gleichmäßig und ändert sich überhaupt nicht.<ref name="NeuM1">{{cite web|url=https://www.physicsforums.com/insights/physics-virtual-particles/|title=The Physics of virtual particles|date=2016-03-28|accessdate=2017-01|last=|first=|author=Arnold Neumaier}}</ref>
In der Physik versteht man unter [[Fluktuation]] die zufällige Änderung einer näherungsweise konstanten Systemgröße. In diesem Sinne ist jedoch die Vakuumfluktuation ''nicht'' zu verstehen. Das [[Vakuum]] ist in Raum und Zeit gleichmäßig und ändert sich überhaupt nicht.<ref name="NeuM1">{{Internetquelle |autor=Arnold Neumaier |url=https://www.physicsforums.com/insights/physics-virtual-particles/ |titel=The Physics of virtual particles |datum=2016-03-28 |abruf=2017-01}}</ref>


In den Formeln der [[Quantenfeldtheorie]] von [[Werner Heisenberg]] und [[Wolfgang Pauli]] treten [[Unendlichkeit]]en auf, die von [[Richard Feynman]] und [[Julian Seymour Schwinger]] 1948 und etwas früher während des Krieges von [[Shin’ichirō Tomonaga]] durch [[Quantenelektrodynamik#Lagrange-Dichte|Renormierung]] aufgelöst wurden. Im Zusammenhang mit den dabei entstehenden Termen entwickelten die Physiker die Vorstellung von Wolken aus virtuellen Teilchen, welche die Teilchen der klassischen nicht störungs-theoretischen [[Elektrodynamik]] umgeben. In der Vorstellung können virtuelle Teilchen in einem sehr kurzen Zeitraum real und sofort wieder absorbiert werden. Durch die entstehende Fluktuation der Energie verändert sich die messbare Masse und Ladung der Teilchen. Somit ist diese Fluktuation in den [[Observable|beobachtbaren]] Teilchen wie [[Elektron]]en oder [[Photon]]en bereits enthalten und kann niemals isoliert betrachtet werden. Diese virtuellen Teilchen haben somit ''keine'' physikalische Bedeutung, daher darf die Vakuumfluktuation auch nicht mit der [[Paarbildung (Physik)|Paarbildung]] verwechselt werden.<ref>{{cite web|url=http://th.physik.uni-frankfurt.de/~hees/publ/lect.pdf|author=Hendrik van Hees|date=2016-02|accessdate=2017-02|title=Introduction to Relativistic Quantum Field Theory|pages=127 ff.}}</ref>
In den [[Störungstheorie|störungs-theoretischen]] Formeln der [[Quantenfeldtheorie]] von [[Werner Heisenberg]] und [[Wolfgang Pauli]] treten [[Unendlichkeit]]en auf, die von [[Richard Feynman]] und [[Julian Seymour Schwinger]] 1948 und etwas früher von [[Shin’ichirō Tomonaga]] durch die mathematische Methode der [[Quantenelektrodynamik#Lagrange-Dichte|Renormierung]] aufgelöst wurden. Im Zusammenhang mit den dabei entstehenden Summanden entwickelten die Physiker die Vorstellung von Wolken aus virtuellen Teilchen, welche die Teilchen der klassischen [[Elektrodynamik]] (wie [[Elektron]]en oder [[Photon]]en) umgeben. In dieser Vorstellung können virtuelle Teilchen unter Verletzung des [[Energieerhaltungssatz]]es in einem unbeobachtbar kurzen Zeitraum real sein, bevor sie sofort wieder absorbiert werden. Durch die entstehende Fluktuation der Eigenschaften dieser Teilchenwolke verändern sich die in allen Prozessen in Erscheinung tretende Masse und Ladung der Teilchen. Somit ist diese Fluktuation in den [[Observable|beobachtbaren]] Teilchen wie Elektronen oder Photonen bereits enthalten und kann niemals isoliert betrachtet werden. Diese virtuellen Teilchen sind somit theoretische Konstrukte und haben ''keine'' reale physikalische Bedeutung. Die Vakuumfluktuation ist insbesondere nicht mit der [[Paarbildung (Physik)|Paarbildung]] zu verwechseln, die nur bei realer Energiezufuhr erfolgt und zwei reelle Teilchen erzeugt.<ref>{{Internetquelle |autor=Hendrik van Hees |url=http://th.physik.uni-frankfurt.de/~hees/publ/lect.pdf |titel=Introduction to Relativistic Quantum Field Theory |datum=2016-02 |seiten=127 ff. |format=PDF |abruf=2017-02}}</ref>


Mit der Nutzung des Begriffs Vakuumfluktuation setzt sich der Mathematiker Arnold Neumaier in einem Forumsbeitrag kritisch auseinander. Er betont, dass die Verwendung von [[Vakuumerwartungswert]]en kein Anhaltspunkt für Vakuumfluktuationen sind, da diese Erwartungswerte in allen Berechnungen auftreten werden, solange sie in einer störungstheoretischen Einstellung durchgeführt werden. In nicht störungstheoretischen Studien von Quantenfeldtheorien auf dem [[Gittereichtheorie|Gitter]] habe niemand die geringste Spur von Vakuumfluktuationen gesehen.<ref>{{Internetquelle |autor=Arnold Neumaier |url=https://www.physicsforums.com/insights/vacuum-fluctuations-experimental-practice/ |titel=Vacuum Fluctuations in Experimental Practice |datum=2017-01-19 |abruf=2019-01-31}}</ref>
== Vakuumfluktuation in der experimentellen Praxis der Physik ==
Seit ca.&nbsp;2010 gibt es mehr und mehr physikalische Experimente, die für sich in Anspruch nehmen, die Vakuumfluktuation gemessen zu haben. Einige der Experimente sind im Folgenden aufgeführt.


== Vakuumfluktuation in der experimentellen Praxis der Physik ==
Mit der Nutzung des Begriffs Vakuumfluktuation setzt sich der Mathematiker Arnold Neumaier in einem Forumsbeitrag kritisch auseinander. Er betont, dass die Verwendung von [[Vakuumerwartungswert]]en kein Anhaltspunkt für Vakuumfluktuationen sind, da diese Erwartungswerte in allen Berechnungen auftreten werden, solange sie in einer störungstheoretischen Einstellung durchgeführt werden. In nicht störungstheoretischen Studien von Quantenfeldtheorien auf dem [[Gittereichtheorie|Gitter]] habe niemand die geringste Spur von Vakuumfluktuationen gesehen.<ref>{{cite web|title=Vacuum Fluctuations in Experimental Practice|url=https://www.physicsforums.com/insights/vacuum-fluctuations-experimental-practice/|date=2017-01-19|author=Arnold Neumaier|accessdate=2019-01-31}}</ref>
1946 wurden die ersten Effekte, die der bis dahin nur theoretisch diskutierten Vakuumpolarisation zugeschrieben wurden, in Messungen beobachtet: die [[Landé-Faktor#Anomale g-Faktoren des Spins|Anomalie des magnetischen Moments des Elektrons]] und die Aufspaltung zweier Niveaus des H-Atoms ([[Lamb-Verschiebung]]). Seitdem gibt es mehr und mehr physikalische Experimente, die für sich in Anspruch nehmen, die Vakuumfluktuation gemessen zu haben. Einige der Experimente sind im Folgenden aufgeführt.


== Der Casimir-Effekt ==
=== Der Casimir-Effekt ===
In der Vergangenheit wurde insbesondere der [[Casimir-Effekt]] (Anziehungskräfte zwischen parallelen Metallplatten) als Beweis dafür angesehen, dass Vakuumfluktuationen bzw. virtuelle Teilchen eine eigenständige physikalische Bedeutung haben könnten.
Vielfach wird der [[Casimir-Effekt]] (Anziehungskräfte zwischen parallelen Metallplatten) als Beweis dafür angesehen, dass Vakuumfluktuationen bzw. virtuelle Teilchen eine eigenständige physikalische Bedeutung haben.


[[Robert L. Jaffe]] zeigte 2005 jedoch, dass diese Effekte durch [[Störungstheorie (Quantenmechanik)|quantentheoretische Störungsrechnung]] auch ''ohne'' Vakuumfluktuationen hergeleitet werden können.<ref>R. L. Jaffe ''Casimir effect and the quantum vacuum.'' Physical Review D, 2005, 72. Jg., Nr. 2, S. 021301. {{arXiv|hep-th/0503158}}</ref> Der Casimir-Effekt ergibt sich dabei bereits aus der [[Van-der-Waals-Wechselwirkung]] für Platten unendlicher Ausdehnung und [[Leitfähigkeit]]. Auch [[Joseph Cugnon]] hat bestätigt, dass die Ursache des Casimir-Effekts eher mit der Van-der-Waals-Wechselwirkung zu erklären ist.<ref>Joseph Cugnon: ''The Casimir Effect and the Vacuum Energy: Duality in the Physical Interpretation.'' In: ''Few-Body Systems.'' 53.1-2 (2012), S. 181–188. [http://orbi.ulg.ac.be/jspui/bitstream/2268/137507/1/238.pdf ulg.ac.be] (PDF)</ref>
[[Robert L. Jaffe]] zeigte 2005 jedoch, dass diese Effekte durch [[Störungstheorie (Quantenmechanik)|quantentheoretische Störungsrechnung]] auch ''ohne'' Vakuumfluktuationen hergeleitet werden können.<ref>R. L. Jaffe: ''Casimir effect and the quantum vacuum.'', ''Physical Review'' D, 2005, 72. Jg., Nr. 2, S. 021301. {{arXiv|hep-th/0503158}}</ref> Der Casimir-Effekt ergibt sich dabei bereits aus der [[Van-der-Waals-Wechselwirkung]] für Platten unendlicher Ausdehnung und [[Leitfähigkeit]]. Auch [[Joseph Cugnon]] hat vorgeschlagen, die Ursache des Casimir-Effekts eher mit der Van-der-Waals-Wechselwirkung zu erklären.<ref>Joseph Cugnon: ''The Casimir Effect and the Vacuum Energy: Duality in the Physical Interpretation.'' In: ''Few-Body Systems.'' 53.1-2 (2012), S. 181–188. [http://orbi.ulg.ac.be/jspui/bitstream/2268/137507/1/238.pdf ulg.ac.be] (PDF)</ref>


=== Dynamischer Casimir-Effekt ===
=== Dynamischer Casimir-Effekt ===
Aus der [[Quantenfeldtheorie]] hat der Physiker Gerald T. Moore 1970 hergeleitet, dass virtuelle Teilchen, die sich in einem Vakuum befinden, real werden können, wenn sie von einem Spiegel reflektiert werden, der sich fast mit [[Lichtgeschwindigkeit]] bewegt.<ref>{{Literatur |Autor=Gerald T. Moore |Titel=Quantum Theory of the Electromagnetic Field in a Variable-Length One-Dimensional Cavity |Datum=1970-09 |bibcode=1970JMP....11.2679M}}</ref> Er wurde später auch dynamischer Casimir-Effekt genannt.
Aus der [[Quantenfeldtheorie]] hat der Physiker Gerald T. Moore 1970 hergeleitet, dass virtuelle Teilchen, die sich in einem Vakuum befinden, real werden können, wenn sie von einem Spiegel reflektiert werden, der sich fast mit [[Lichtgeschwindigkeit]] bewegt.<ref>{{Literatur |Autor=Gerald T. Moore |Titel=Quantum Theory of the Electromagnetic Field in a Variable-Length One-Dimensional Cavity |Datum=1970-09 |bibcode=1970JMP....11.2679M}}</ref> Er wurde später auch dynamischer Casimir-Effekt genannt.


2008 zeigten Haro und Elizalde jedoch , dass dieser Effekt eher auf [[thermische Emission]] zurückzuführen sei.<ref>{{Literatur |Autor=Jaume Haro and Emilio Elizalde |Titel=Black hole collapse simulated by vacuum fluctuations with a moving semitransparent mirror |Datum=2008-02 |arXiv=0712.4141 |DOI=10.1103/PhysRevD.77.045011}}</ref>
2008 zeigten Haro und Elizalde jedoch, dass dieser Effekt eher auf [[thermische Emission]] zurückzuführen sei.<ref>{{Literatur |Autor=Jaume Haro, Emilio Elizalde |Titel=Black hole collapse simulated by vacuum fluctuations with a moving semitransparent mirror |Datum=2008-02 |arXiv=0712.4141 |DOI=10.1103/PhysRevD.77.045011}}</ref>


2011 hat ein Team von schwedischen Wissenschaftlern der [[Technische Hochschule Chalmers|Chalmers University of Technology]] die Idee eines schnell rotierenden Spiegels umgesetzt, indem sie ein [[SQUID]] fast auf den [[Absoluter Nullpunkt|Nullpunkt]] abkühlten und es mit Hilfe eines äußeren Magnetfeldes vibrieren ließen. Dabei entstanden messbare [[Photon]]en, deren Energiespektrum symmetrisch war zur halben [[Frequenz]] des oszillierenden fiktiven Spiegels. Daraus schlossen die Forscher, den dynamischen Casimir-Effekt gemessen zu haben.<ref>{{Literatur |Autor=P. Delsing, F. Nori, T. Duty, J. R. Johansson, M. Simoen |Titel=Observation of the dynamical Casimir effect in a superconducting circuit |Sammelwerk=Nature |Band=479 |Nummer=7373 |Datum=2011-11 |ISSN=1476-4687 |Seiten=376–379 |arXiv=1105.4714 |DOI=10.1038/nature10561}}</ref><ref>{{cite web|title=Von nichts kommt nichts|url=http://www.wissenschaft.de/archiv/-/journal_content/56/12054/1558239/%E2%80%9EVon-Nichts-kommt-nichts%22,-hei%C3%9Ft/|author=Rüdiger Vaas|date=2012-01|accessdate=2011-11}}</ref><ref>{{cite web|title=Licht aus Vakuum erzeugt|url=http://www.spektrum.de/news/licht-aus-vakuum-erzeugt/1129099|author=Maike Pollmann|date=2016-11|accessdate=2017-01}}</ref>
2011 hat ein Team von schwedischen Wissenschaftlern der [[Technische Hochschule Chalmers|Chalmers University of Technology]] die Idee eines schnell rotierenden Spiegels umgesetzt, indem sie ein [[SQUID]] fast auf den [[Absoluter Nullpunkt|Nullpunkt]] abkühlten und es mit Hilfe eines äußeren Magnetfeldes vibrieren ließen. Dabei entstanden messbare [[Photon]]en, deren Energiespektrum symmetrisch war zur halben [[Frequenz]] des oszillierenden fiktiven Spiegels. Daraus schlossen die Forscher, den dynamischen Casimir-Effekt gemessen zu haben.<ref>{{Literatur |Autor=P. Delsing, F. Nori, T. Duty, J. R. Johansson, M. Simoen |Titel=Observation of the dynamical Casimir effect in a superconducting circuit |Sammelwerk=Nature |Band=479 |Nummer=7373 |Datum=2011-11 |ISSN=1476-4687 |Seiten=376–379 |arXiv=1105.4714 |DOI=10.1038/nature10561}}</ref><ref>{{Internetquelle |autor=Rüdiger Vaas |url=http://www.wissenschaft.de/archiv/-/journal_content/56/12054/1558239/%E2%80%9EVon-Nichts-kommt-nichts%22,-hei%C3%9Ft/ |titel=Von nichts kommt nichts |datum=2012-01 |abruf=2011-11}}</ref><ref>{{Internetquelle |autor=Maike Pollmann |url=http://www.spektrum.de/news/licht-aus-vakuum-erzeugt/1129099 |titel=Licht aus Vakuum erzeugt |datum=2016-11 |abruf=2017-01}}</ref>


== Messungen ==
=== Messungen mit sehr kurzen Laserimpulsen ===
=== Messungen mit sehr kurzen Laserimpulsen ===
2015 haben Physiker an der [[Universität Konstanz]] nach eigener Aussage Vakuumfluktuationen des elektromagnetischen Feldes direkt nachgewiesen. Mit einem sehr kurzen Laserpuls im Bereich einer [[Femtosekundenlaser|Femtosekunde]] wurden Effekte gemessen, die sich die Wissenschaftler nur mithilfe von Vakuumfluktuationen erklären können.<ref>{{cite web|title=Direct sampling of electric-field vacuum fluctuations|url=https://kops.uni-konstanz.de/bitstream/handle/123456789/31877/Leitensdorfer_0-301750.pdf?sequence=1&isAllowed=y|format=PDF|author=C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, A. Leitenstorfer|accessdate=2017-01}}</ref><ref>{{cite web|title=Vakuumfluktuationen|url=http://www.weltderphysik.de/gebiet/theorie/quanteneffekte/vakuumfluktuationen/|accessdate=2017-01|archiveurl=https://web.archive.org/web/20170121044507/http://www.weltderphysik.de/gebiet/theorie/quanteneffekte/vakuumfluktuationen/|archivedate=2017-01-21|offline=yes}}</ref> Leitenstorfer und Kollegen kommen zu dem Schluss, dass die beobachteten Effekte von [[Virtuelle Teilchen|virtuellen Photonen]] ausgelöst wurden.
2015 haben Physiker an der [[Universität Konstanz]] nach eigener Aussage Vakuumfluktuationen des elektromagnetischen Feldes direkt nachgewiesen. Mit einem sehr kurzen Laserpuls im Bereich einer [[Femtosekundenlaser|Femtosekunde]] wurden Effekte gemessen, die sich die Wissenschaftler nur mithilfe von Vakuumfluktuationen erklären können.<ref>{{Internetquelle |autor=C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, A. Leitenstorfer |url=https://kops.uni-konstanz.de/bitstream/handle/123456789/31877/Leitensdorfer_0-301750.pdf?sequence=1&isAllowed=y |titel=Direct sampling of electric-field vacuum fluctuations |format=PDF |abruf=2017-01}}</ref><ref>{{Internetquelle |url=http://www.weltderphysik.de/gebiet/theorie/quanteneffekte/vakuumfluktuationen/ |titel=Vakuumfluktuationen |offline=1 |archiv-url=https://web.archive.org/web/20170121044507/http://www.weltderphysik.de/gebiet/theorie/quanteneffekte/vakuumfluktuationen/ |archiv-datum=2017-01-21 |abruf=2017-01}}</ref> Leitenstorfer und Kollegen kommen zu dem Schluss, dass die beobachteten Effekte von [[Virtuelle Teilchen|virtuellen Photonen]] ausgelöst wurden.


=== Messungen supraleitender Bereiche in kondensierter Materie ===
=== Messungen supraleitender Bereiche in kondensierter Materie ===
[[Quantenphasenübergang|Quantenphasenübergänge]] treten in [[Kondensierte Materie|kondensierter Materie]] auf, wenn beim absoluten [[Temperaturnullpunkt]] nicht temperaturartige physikalische Parameter wie [[Druck (Physik)|Druck]], die chemische Zusammensetzung oder ein [[Magnetfeld]] variiert werden. Der jeweilige Phasenübergang (zum Beispiel der Übergang von einem [[Isolator (Elektrotechnik)|Isolator]] in einen [[Supraleiter]]) wird in dabei, nach Aussage der Forscher, von Quantenfluktuationen und nicht von thermischen Fluktuationen ausgelöst.<ref>{{Literatur |Titel=Quantum Phase Transitions |Autor=Thomas Vojta |Hrsg= |Sammelwerk=Computational Statistical Physics |Band= |Verlag=Springer |Ort=Berlin, Heidelberg |Datum=2002-01-02 |ISBN=978-3-642-07571-1 |Seiten=211-226 |arXiv=cond-mat/0309604 |DOI=10.1007/978-3-662-04804-7_13}}</ref><ref>{{Literatur |Titel=Quantum Phase Transitions in Electronic Systems |Autor=T. R. KIRKPATRICK, D. BELITZ |Hrsg= |Sammelwerk=Electron Correlation in the Solid State |Verlag=Imperial College Press |Datum=1999-01-02 |Seiten=297-370 |arXiv=cond-mat/9707001v2 |DOI=10.1142/9781860944079_0005}}
[[Quantenphasenübergang|Quantenphasenübergänge]] treten in [[Kondensierte Materie|kondensierter Materie]] auf, wenn beim absoluten [[Temperaturnullpunkt]] nicht temperaturartige physikalische Parameter wie [[Druck (Physik)|Druck]], die chemische Zusammensetzung oder ein [[Magnetfeld]] variiert werden. Der jeweilige Phasenübergang (zum Beispiel der Übergang von einem [[Isolator (Elektrotechnik)|Isolator]] in einen [[Supraleiter]]) wird dabei, nach Aussage der Forscher, von Quantenfluktuationen und nicht von thermischen Fluktuationen ausgelöst.<ref>{{Literatur |Autor=Thomas Vojta |Titel=Quantum Phase Transitions |Sammelwerk=Computational Statistical Physics |Verlag=Springer |Ort=Berlin, Heidelberg |Datum=2002 |ISBN=3-642-07571-1 |Seiten=211-226 |arXiv=cond-mat/0309604 |DOI=10.1007/978-3-662-04804-7_13}}</ref><ref>{{Literatur |Autor=T. R. Kirkpatrick, D. Belitz |Titel=Quantum Phase Transitions in Electronic Systems |Sammelwerk=Electron Correlation in the Solid State |Verlag=Imperial College Press |Datum=1999-01-02 |Seiten=297-370 |arXiv=cond-mat/9707001v2 |DOI=10.1142/9781860944079_0005}}</ref> Forscher der [[Bar-Ilan-Universität]] untersuchten extrem dünne Schichten eines Niob-Titan-Stickstoff-Supraleiters in der Nähe des absoluten Nullpunkts. Mittels eines [[SQUID]] wurde festgestellt, dass sich die supraleitenden Bereiche mit der Zeit verändern, also zeitlich und räumlich fluktuieren. Die gewonnenen Erkenntnisse könnten bei der Entwicklung von [[Quantencomputer]]n nützlich sein.<ref>{{Literatur |Autor=A. Kremen, H. Khan, Y. L. Loh, T. I. Baturina, N. Trivedi, A. Frydman, B. Kalisky |Titel=Imaging quantum fluctuations near criticality |Sammelwerk=nature physics |Band=14 |Datum=2018-08-20 |Seiten=1205–1210 |arXiv=1806.10972 |DOI=10.1038/s41567-018-0264-z}}</ref><ref>{{Literatur |Autor=Bar-Ilan University, 21.08.2018 – NPO |Titel=Quantenfluktuationen sichtbar gemacht |Sammelwerk=scinexx |Verlag=MMCD NEW MEDIA |Ort=Düsseldorf |Datum= |Online=https://www.scinexx.de/news/technik/quantenfluktuationen-sichtbar-gemacht/ |Abruf=2021-03-15}}</ref>
</ref> Forscher der [[Bar-Ilan-Universität]] untersuchten extrem dünne Schichten eines Niob-Titan-Stickstoff-Supraleiters in der Nähe des absoluten Nullpunkts. Mittels eines [[SQUID]] wurde festgestellt, dass sich die supraleitenden Bereiche mit der Zeit verändern, also zeitlich und räumlich fluktuieren. Die gewonnenen Erkenntnisse könnten bei der Entwicklung von [[Quantencomputer]]n nützlich sein.<ref>{{Literatur |Titel=Imaging quantum fluctuations near criticality |Autor=A. Kremen, H. Khan, Y. L. Loh, T. I. Baturina, N. Trivedi, A. Frydman, B. Kalisky |Hrsg= |Sammelwerk=nature physics |Band=14 |Datum=2018-08-20 |Seiten=1205–1210 |arXiv=1806.10972 |DOI=10.1038/s41567-018-0264-z}}</ref><ref>{{Literatur |Titel=Quantenfluktuationen sichtbar gemacht |Autor=Bar-Ilan University, 21.08.2018 – NPO |Sammelwerk=scinexx |Verlag=MMCD NEW MEDIA, Düsseldorf |Online=https://www.scinexx.de/news/technik/quantenfluktuationen-sichtbar-gemacht/ |Abruf=2021-03-15}}</ref>


=== Messungen an Gravitationswellendetektoren ===
=== Messungen an Gravitationswellendetektoren ===
2020 berichteten Wissenschaftler mittels [[LIGO]] erstmals Auswirkungen von Quantenfluktuationen auf makroskopische Objekte menschlicher Größenordnung gemessen zu haben – auf die Bewegung 40kg-schwerer Spiegel der LIGO-Observatium-Interferometer-Detektoren. Ziel der Untersuchungen ist die Verbesserung der Empfindlichkeit von [[Gravitationswellendetektor]]en, die zur Messung von [[Gravitationswellen]] [[gequetschtes Licht]] verwenden. Durch die Korrelation von [[Schrotrauschen]] und einem postulierten Quantenrauschen (im Artikel mit QRPN = "'''q'''uantum '''r'''adiation '''p'''ressure '''n'''oise" bezeichnet), konnte die Empfindlichkeit der Detektoren verbessert werden, woraus die Forscher die direkte Messung von Quantenfluktuationen schlussfolgern.<ref>{{Literatur |Autor=Yu Haocun L. McCuller M.Tse N.Kijbunchoo L. Barsotti N.Mavalvala |Titel=Quantum correlations between light and the kilogram-mass mirrors of LIGO |Sammelwerk=Nature |Band=583 |Nummer=7814 |Datum=2020-07 |ISSN=1476-4687 |Seiten=43–47 |Sprache=en |arXiv=2002.01519 |DOI=10.1038/s41586-020-2420-8 |PMID=32612226}}</ref><ref>{{cite news |title=Quantum fluctuations can jiggle objects on the human scale |url=https://phys.org/news/2020-07-quantum-fluctuations-jiggle-human-scale.html |work=phys.org |language=en |accessdate=2021-03}}</ref><ref>{{cite news |title=Quantenrauschen bewegt auch uns |first=Nadja |last=Prodbregar |publisher=MMCD New Media, Düsseldorf |date=2020-07 |journal=Scinexx Das Wissensmagazin |accessdate=2021-03 |url=https://www.scinexx.de/news/technik/quantenrauschen-bewegt-auch-uns/}}</ref>
2020 berichteten Wissenschaftler mittels [[LIGO]] erstmals Auswirkungen von Quantenfluktuationen auf makroskopische Objekte menschlicher Größenordnung gemessen zu haben – auf die Bewegung 40kg-schwerer Spiegel der LIGO-Observatium-Interferometer-Detektoren. Ziel der Untersuchungen ist die Verbesserung der Empfindlichkeit von [[Gravitationswellendetektor]]en, die zur Messung von [[Gravitationswellen]] [[gequetschtes Licht]] verwenden. Durch die Korrelation von [[Schrotrauschen]] und einem postulierten Quantenrauschen (im Artikel mit QRPN = '''q'''uantum '''r'''adiation '''p'''ressure '''n'''oise“ bezeichnet), konnte die Empfindlichkeit der Detektoren verbessert werden, woraus die Forscher die direkte Messung von Quantenfluktuationen schlussfolgern.<ref>{{Literatur |Autor=Yu Haocun, L. McCuller, M. Tse, N. Kijbunchoo, L. Barsotti, N. Mavalvala |Titel=Quantum correlations between light and the kilogram-mass mirrors of LIGO |Sammelwerk=Nature |Band=583 |Nummer=7814 |Datum=2020-07 |ISSN=1476-4687 |Seiten=43–47 |Sprache=en |arXiv=2002.01519 |DOI=10.1038/s41586-020-2420-8 |PMID=32612226}}</ref><ref>{{Internetquelle |url=https://phys.org/news/2020-07-quantum-fluctuations-jiggle-human-scale.html |titel=Quantum fluctuations can jiggle objects on the human scale |werk=phys.org |sprache=en |abruf=2021-03}}</ref><ref>{{Literatur |Autor=Nadja Prodbregar |Titel=Quantenrauschen bewegt auch uns |Sammelwerk=Scinexx Das Wissensmagazin |Verlag=MMCD New Media |Ort=Düsseldorf |Datum=2020-07 |Online=https://www.scinexx.de/news/technik/quantenrauschen-bewegt-auch-uns/ |Abruf=2022-12-01}}</ref>


=== Messungen der magnetischen Anomalie des Myons ===
=== Messungen der magnetischen Anomalie des Myons ===
Seit langem vermessen Physiker das [[Anomales Magnetisches Moment|anomale magnetische Moment]] von Elementarteilchen. Bei den Messungen für das [[Myon]] sind im April 2021 Abweichungen zu den Vorhersagen des Standardmodells gefunden worden. Anlässlich der gefundenen Differenzen wurde der Wert für das Myon mit [[Supercomputer]]n, basierend auf dem Standardmodell, neu berechnet. Ein Anteil des anomalen magnetischen Moments wird im englischen Artikel mit [[Vakuumpolarisation|''hadronic-vacuum-polarization'']] bezeichnet.<ref>{{Literatur |Autor=B. Abi et al. |Titel=Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm |Sammelwerk=Physical Review Letters |Band=126 |Nummer=14 |Datum=2021-04 |Sprache=en |arXiv=2104.03281|DOI=10.1103/PhysRevLett.126.141801}}</ref> In diesen Zusammenhang sprechen die Forscher, die den Anteil der hadronischen Vakuumpolarisation (LO-HVP) neu berechnet haben, wie auch [[Josef M. Gaßner]] von Vakuum- oder Quantenfluktuationen.<ref>{{Literatur |Titel=Leading hadronic contribution to the muon magnetic moment from lattice QCD |Autor=Sz. Borsanyi, Z. Fodor, , J. N. Guenther, C. Hoelbling, S. D. Katz, Lellouch, T. Lippert, K. Miura, , L. Parato, K. K. Szabo, F. Stokes, B. C. Toth, Cs. Torok, L. Varnhorst |Sammelwerk=nature |Band=593 |Datum=2021-04-07 |Seiten=51-55 |arXiv=2002.12347 |DOI=10.1038/s41586-021-03418-1}}</ref><ref>{{cite web|url=https://www.youtube.com/watch?v=Ep0Fq7Cj2Nw|title=Muon g-2 Experiment|author=Josef M. Gaßner, München|accessdate=2021-04}}</ref>
Seit langem vermessen Physiker das [[Anomales Magnetisches Moment|anomale magnetische Moment]] von Elementarteilchen. Bei den Messungen für das [[Myon]] sind im April 2021 Abweichungen zu den Vorhersagen des Standardmodells gefunden worden. Anlässlich der gefundenen Differenzen wurde der Wert für das Myon mit [[Supercomputer]]n, basierend auf dem Standardmodell, neu berechnet. Ein Anteil des anomalen magnetischen Moments wird im englischen Artikel mit [[Vakuumpolarisation|''hadronic-vacuum-polarization'']] bezeichnet.<ref>{{Literatur |Autor=B. Abi et al. |Titel=Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm |Sammelwerk=Physical Review Letters |Band=126 |Nummer=14 |Datum=2021-04 |Sprache=en |arXiv=2104.03281 |DOI=10.1103/PhysRevLett.126.141801}}</ref> In diesem Zusammenhang sprechen die Forscher, die den Anteil der hadronischen Vakuumpolarisation (LO-HVP) neu berechnet haben, wie auch [[Josef M. Gaßner]] von Vakuum- oder Quantenfluktuationen.<ref>{{Literatur |Autor=Sz. Borsanyi, Z. Fodor, , J. N. Guenther, C. Hoelbling, S. D. Katz, Lellouch, T. Lippert, K. Miura, , L. Parato, K. K. Szabo, F. Stokes, B. C. Toth, Cs. Torok, L. Varnhorst |Titel=Leading hadronic contribution to the muon magnetic moment from lattice QCD |Sammelwerk=nature |Band=593 |Datum=2021-04-07 |Seiten=51-55 |arXiv=2002.12347 |DOI=10.1038/s41586-021-03418-1}}</ref><ref>{{Internetquelle |autor=Josef M. Gaßner, München |url=https://www.youtube.com/watch?v=Ep0Fq7Cj2Nw |titel=Muon g-2 Experiment |abruf=2021-04}}</ref>


== Begriffsverwendung in physikalischen Lexika ==
== Begriffsverwendung in physikalischen Lexika ==
In verschiedenen Artikeln wird Vakuumfluktuation unter Annahme von [[Nullpunktsenergie]], die auch Vakuumenergie genannt wird, gelegentlich hergeleitet aus der Unschärferelation zwischen Zeit und Energie.
In verschiedenen Artikeln wird Vakuumfluktuation unter Annahme von [[Nullpunktsenergie]], die auch Vakuumenergie genannt wird, gelegentlich hergeleitet aus der Unschärferelation zwischen Zeit und Energie.


Dabei wird manchmal der Eindruck vermittelt, dass diese Fluktuationen physikalische Effekte auslösen könnten.<ref>{{cite web|url=http://www.spektrum.de/lexikon/physik/vakuum/15034|title=Vakuum – 3.6 Fluktuationen|author=Henning Genz, Karlsruhe|accessdate=2017-01}}</ref> So werden Vakuumfluktuationen als Beleg dafür angeführt, dass das quantenmechanische Vakuum ''nicht'' im klassischen Sinne „leer“ ist. Auch werden Vakuumfluktuationen gelegentlich als mögliche Erklärung für die [[Dunkle Energie]] angesehen, jedoch unterscheiden sich die errechneten Werte um den Faktor&nbsp;10<sup>120</sup> (Problem der [[Kosmologische Konstante|Kosmologischen Konstante]]).
Dabei wird manchmal der Eindruck vermittelt, dass diese Fluktuationen physikalische Effekte auslösen könnten.<ref>{{Internetquelle |autor=Henning Genz, Karlsruhe |url=http://www.spektrum.de/lexikon/physik/vakuum/15034 |titel=Vakuum – 3.6 Fluktuationen |abruf=2017-01}}</ref> So werden Vakuumfluktuationen als Beleg dafür angeführt, dass das quantenmechanische Vakuum ''nicht'' im klassischen Sinne „leer“ ist. Auch werden Vakuumfluktuationen gelegentlich als mögliche Erklärung für die [[Dunkle Energie]] angesehen, jedoch unterscheiden sich die errechneten Werte um den Faktor&nbsp;10<sup>120</sup> (Problem der [[Kosmologische Konstante|Kosmologischen Konstante]]).


== Literatur ==
== Literatur ==
Zeile 46: Zeile 48:
* [[Kimball Milton]] (Hrsg.): ''The Casimir Effect'', World Scientific 2001
* [[Kimball Milton]] (Hrsg.): ''The Casimir Effect'', World Scientific 2001
* [[Peter W. Milonni]]: ''The quantum vacuum. An introduction to quantum electrodynamics'', Academic Press 1994
* [[Peter W. Milonni]]: ''The quantum vacuum. An introduction to quantum electrodynamics'', Academic Press 1994
* [[Johann Rafelski]], [[Berndt Müller]]: ''The structured Vacuum – thinking about nothing.'' Harri Deutsch, 1985; [http://www.physics.arizona.edu/~rafelski/Books/StructVacuumE.pdf physics.arizona.edu] (PDF)
* [[Johann Rafelski]], [[Berndt Müller]]: ''The structured Vacuum – thinking about nothing.'' Harri Deutsch, 1985; [http://www.physics.arizona.edu/~rafelski/Books/StructVacuumE.pdf physics.arizona.edu] (PDF; 1,1&nbsp;MB)
* Andreas Müller: [http://www.spektrum.de/astrowissen/lexdt_q03.html#qv ''Quantenvakuum''.] Astrowissen
* Andreas Müller: [http://www.spektrum.de/astrowissen/lexdt_q03.html#qv ''Quantenvakuum''.] Astrowissen



Aktuelle Version vom 11. Mai 2024, 00:10 Uhr

Pionier der Vakuumfluktuation Shin’ichirō Tomonaga (1965)

Vakuumfluktuation bzw. Quantenfluktuation, Vakuumpolarisation und virtuelles Teilchen sind Begriffe aus der Quantenfeldtheorie. Sie bezeichnen bestimmte mathematische Ausdrücke, die in den Summanden einer Reihe auftauchen, wenn eine Energie oder eine Übergangsamplitude mit den Mitteln der quantenmechanischen Störungstheorie berechnet wird. Zwecks besserer Veranschaulichung beschreibt man diese Ausdrücke so, als ob die darin vorkommenden Erzeugungs- und Vernichtungsoperatoren und weitere Faktoren für wirklich in der Zeit ablaufende Prozesse stünden. Gelegentlich wird diese Sprechweise aus der quantenmechanischen Energie-Zeit-Unschärferelation heraus begründet in dem Sinne, dass sie für unbeobachtbar kurze Zeit erlaubt seien.[1] Zu beachten ist, dass mit Vakuum in diesem Zusammenhang nicht der von jeglicher Materie und Energie entleerte Raum gemeint ist, sondern der quantenmechanische Zustand niedrigst möglicher Energie (Grundzustand). Als Energieeigenzustand zeigt er keinerlei beobachtbare zeitliche Veränderung, insbesondere keine zeitliche Fluktuation. Dass er der Zustand niedrigst möglicher Energie ist, bedeutet hier, dass man z. B. kein wirklich nachweisbares Teilchen (oder Energiequant) daraus entfernen kann.

Die in ähnlichem Zusammenhang oft auftauchenden Begriffe Nullpunktsschwingung und Nullpunktsenergie bezeichnen hingegen oft eindeutig beobachtbare Tatsachen wie z. B. messbar veränderte Reaktionsenergie. Diese beruhen auf der in der Quantenphysik gültigen Orts-Impuls-Unschärferelation.

Begriffsentstehung in der Quantenfeldtheorie

In der Physik versteht man unter Fluktuation die zufällige Änderung einer näherungsweise konstanten Systemgröße. In diesem Sinne ist jedoch die Vakuumfluktuation nicht zu verstehen. Das Vakuum ist in Raum und Zeit gleichmäßig und ändert sich überhaupt nicht.[2]

In den störungs-theoretischen Formeln der Quantenfeldtheorie von Werner Heisenberg und Wolfgang Pauli treten Unendlichkeiten auf, die von Richard Feynman und Julian Seymour Schwinger 1948 und etwas früher von Shin’ichirō Tomonaga durch die mathematische Methode der Renormierung aufgelöst wurden. Im Zusammenhang mit den dabei entstehenden Summanden entwickelten die Physiker die Vorstellung von Wolken aus virtuellen Teilchen, welche die Teilchen der klassischen Elektrodynamik (wie Elektronen oder Photonen) umgeben. In dieser Vorstellung können virtuelle Teilchen unter Verletzung des Energieerhaltungssatzes in einem unbeobachtbar kurzen Zeitraum real sein, bevor sie sofort wieder absorbiert werden. Durch die entstehende Fluktuation der Eigenschaften dieser Teilchenwolke verändern sich die in allen Prozessen in Erscheinung tretende Masse und Ladung der Teilchen. Somit ist diese Fluktuation in den beobachtbaren Teilchen wie Elektronen oder Photonen bereits enthalten und kann niemals isoliert betrachtet werden. Diese virtuellen Teilchen sind somit theoretische Konstrukte und haben keine reale physikalische Bedeutung. Die Vakuumfluktuation ist insbesondere nicht mit der Paarbildung zu verwechseln, die nur bei realer Energiezufuhr erfolgt und zwei reelle Teilchen erzeugt.[3]

Mit der Nutzung des Begriffs Vakuumfluktuation setzt sich der Mathematiker Arnold Neumaier in einem Forumsbeitrag kritisch auseinander. Er betont, dass die Verwendung von Vakuumerwartungswerten kein Anhaltspunkt für Vakuumfluktuationen sind, da diese Erwartungswerte in allen Berechnungen auftreten werden, solange sie in einer störungstheoretischen Einstellung durchgeführt werden. In nicht störungstheoretischen Studien von Quantenfeldtheorien auf dem Gitter habe niemand die geringste Spur von Vakuumfluktuationen gesehen.[4]

Vakuumfluktuation in der experimentellen Praxis der Physik

1946 wurden die ersten Effekte, die der bis dahin nur theoretisch diskutierten Vakuumpolarisation zugeschrieben wurden, in Messungen beobachtet: die Anomalie des magnetischen Moments des Elektrons und die Aufspaltung zweier Niveaus des H-Atoms (Lamb-Verschiebung). Seitdem gibt es mehr und mehr physikalische Experimente, die für sich in Anspruch nehmen, die Vakuumfluktuation gemessen zu haben. Einige der Experimente sind im Folgenden aufgeführt.

Der Casimir-Effekt

Vielfach wird der Casimir-Effekt (Anziehungskräfte zwischen parallelen Metallplatten) als Beweis dafür angesehen, dass Vakuumfluktuationen bzw. virtuelle Teilchen eine eigenständige physikalische Bedeutung haben.

Robert L. Jaffe zeigte 2005 jedoch, dass diese Effekte durch quantentheoretische Störungsrechnung auch ohne Vakuumfluktuationen hergeleitet werden können.[5] Der Casimir-Effekt ergibt sich dabei bereits aus der Van-der-Waals-Wechselwirkung für Platten unendlicher Ausdehnung und Leitfähigkeit. Auch Joseph Cugnon hat vorgeschlagen, die Ursache des Casimir-Effekts eher mit der Van-der-Waals-Wechselwirkung zu erklären.[6]

Dynamischer Casimir-Effekt

Aus der Quantenfeldtheorie hat der Physiker Gerald T. Moore 1970 hergeleitet, dass virtuelle Teilchen, die sich in einem Vakuum befinden, real werden können, wenn sie von einem Spiegel reflektiert werden, der sich fast mit Lichtgeschwindigkeit bewegt.[7] Er wurde später auch dynamischer Casimir-Effekt genannt.

2008 zeigten Haro und Elizalde jedoch, dass dieser Effekt eher auf thermische Emission zurückzuführen sei.[8]

2011 hat ein Team von schwedischen Wissenschaftlern der Chalmers University of Technology die Idee eines schnell rotierenden Spiegels umgesetzt, indem sie ein SQUID fast auf den Nullpunkt abkühlten und es mit Hilfe eines äußeren Magnetfeldes vibrieren ließen. Dabei entstanden messbare Photonen, deren Energiespektrum symmetrisch war zur halben Frequenz des oszillierenden fiktiven Spiegels. Daraus schlossen die Forscher, den dynamischen Casimir-Effekt gemessen zu haben.[9][10][11]

Messungen mit sehr kurzen Laserimpulsen

2015 haben Physiker an der Universität Konstanz nach eigener Aussage Vakuumfluktuationen des elektromagnetischen Feldes direkt nachgewiesen. Mit einem sehr kurzen Laserpuls im Bereich einer Femtosekunde wurden Effekte gemessen, die sich die Wissenschaftler nur mithilfe von Vakuumfluktuationen erklären können.[12][13] Leitenstorfer und Kollegen kommen zu dem Schluss, dass die beobachteten Effekte von virtuellen Photonen ausgelöst wurden.

Messungen supraleitender Bereiche in kondensierter Materie

Quantenphasenübergänge treten in kondensierter Materie auf, wenn beim absoluten Temperaturnullpunkt nicht temperaturartige physikalische Parameter wie Druck, die chemische Zusammensetzung oder ein Magnetfeld variiert werden. Der jeweilige Phasenübergang (zum Beispiel der Übergang von einem Isolator in einen Supraleiter) wird dabei, nach Aussage der Forscher, von Quantenfluktuationen und nicht von thermischen Fluktuationen ausgelöst.[14][15] Forscher der Bar-Ilan-Universität untersuchten extrem dünne Schichten eines Niob-Titan-Stickstoff-Supraleiters in der Nähe des absoluten Nullpunkts. Mittels eines SQUID wurde festgestellt, dass sich die supraleitenden Bereiche mit der Zeit verändern, also zeitlich und räumlich fluktuieren. Die gewonnenen Erkenntnisse könnten bei der Entwicklung von Quantencomputern nützlich sein.[16][17]

Messungen an Gravitationswellendetektoren

2020 berichteten Wissenschaftler mittels LIGO erstmals Auswirkungen von Quantenfluktuationen auf makroskopische Objekte menschlicher Größenordnung gemessen zu haben – auf die Bewegung 40kg-schwerer Spiegel der LIGO-Observatium-Interferometer-Detektoren. Ziel der Untersuchungen ist die Verbesserung der Empfindlichkeit von Gravitationswellendetektoren, die zur Messung von Gravitationswellen gequetschtes Licht verwenden. Durch die Korrelation von Schrotrauschen und einem postulierten Quantenrauschen (im Artikel mit QRPN = „quantum radiation pressure noise“ bezeichnet), konnte die Empfindlichkeit der Detektoren verbessert werden, woraus die Forscher die direkte Messung von Quantenfluktuationen schlussfolgern.[18][19][20]

Messungen der magnetischen Anomalie des Myons

Seit langem vermessen Physiker das anomale magnetische Moment von Elementarteilchen. Bei den Messungen für das Myon sind im April 2021 Abweichungen zu den Vorhersagen des Standardmodells gefunden worden. Anlässlich der gefundenen Differenzen wurde der Wert für das Myon mit Supercomputern, basierend auf dem Standardmodell, neu berechnet. Ein Anteil des anomalen magnetischen Moments wird im englischen Artikel mit hadronic-vacuum-polarization bezeichnet.[21] In diesem Zusammenhang sprechen die Forscher, die den Anteil der hadronischen Vakuumpolarisation (LO-HVP) neu berechnet haben, wie auch Josef M. Gaßner von Vakuum- oder Quantenfluktuationen.[22][23]

Begriffsverwendung in physikalischen Lexika

In verschiedenen Artikeln wird Vakuumfluktuation unter Annahme von Nullpunktsenergie, die auch Vakuumenergie genannt wird, gelegentlich hergeleitet aus der Unschärferelation zwischen Zeit und Energie.

Dabei wird manchmal der Eindruck vermittelt, dass diese Fluktuationen physikalische Effekte auslösen könnten.[24] So werden Vakuumfluktuationen als Beleg dafür angeführt, dass das quantenmechanische Vakuum nicht im klassischen Sinne „leer“ ist. Auch werden Vakuumfluktuationen gelegentlich als mögliche Erklärung für die Dunkle Energie angesehen, jedoch unterscheiden sich die errechneten Werte um den Faktor 10120 (Problem der Kosmologischen Konstante).

Literatur

Einzelnachweise

  1. J. R. Aitchison: Nothing`s plenty. The vacuum in modern quantum field theory. In: Contemporary Physics. 4. Auflage. Band 26. Tailor and Franzis, August 2006, S. 333–391, doi:10.1080/00107518508219107.
  2. Arnold Neumaier: The Physics of virtual particles. 28. März 2016, abgerufen im Januar 2017.
  3. Hendrik van Hees: Introduction to Relativistic Quantum Field Theory. (PDF) Februar 2016, S. 127 ff., abgerufen im Februar 2017.
  4. Arnold Neumaier: Vacuum Fluctuations in Experimental Practice. 19. Januar 2017, abgerufen am 31. Januar 2019.
  5. R. L. Jaffe: Casimir effect and the quantum vacuum., Physical Review D, 2005, 72. Jg., Nr. 2, S. 021301. arxiv:hep-th/0503158
  6. Joseph Cugnon: The Casimir Effect and the Vacuum Energy: Duality in the Physical Interpretation. In: Few-Body Systems. 53.1-2 (2012), S. 181–188. ulg.ac.be (PDF)
  7. Gerald T. Moore: Quantum Theory of the Electromagnetic Field in a Variable-Length One-Dimensional Cavity. September 1970, bibcode:1970JMP....11.2679M.
  8. Jaume Haro, Emilio Elizalde: Black hole collapse simulated by vacuum fluctuations with a moving semitransparent mirror. Februar 2008, doi:10.1103/PhysRevD.77.045011, arxiv:0712.4141.
  9. P. Delsing, F. Nori, T. Duty, J. R. Johansson, M. Simoen: Observation of the dynamical Casimir effect in a superconducting circuit. In: Nature. Band 479, Nr. 7373, November 2011, ISSN 1476-4687, S. 376–379, doi:10.1038/nature10561, arxiv:1105.4714.
  10. Rüdiger Vaas: Von nichts kommt nichts. Januar 2012, abgerufen im November 2011.
  11. Maike Pollmann: Licht aus Vakuum erzeugt. November 2016, abgerufen im Januar 2017.
  12. C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, A. Leitenstorfer: Direct sampling of electric-field vacuum fluctuations. (PDF) Abgerufen im Januar 2017.
  13. Vakuumfluktuationen. Archiviert vom Original (nicht mehr online verfügbar) am 21. Januar 2017; abgerufen im Januar 2017.
  14. Thomas Vojta: Quantum Phase Transitions. In: Computational Statistical Physics. Springer, Berlin, Heidelberg 2002, ISBN 3-642-07571-1, S. 211–226, doi:10.1007/978-3-662-04804-7_13, arxiv:cond-mat/0309604.
  15. T. R. Kirkpatrick, D. Belitz: Quantum Phase Transitions in Electronic Systems. In: Electron Correlation in the Solid State. Imperial College Press, 2. Januar 1999, S. 297–370, doi:10.1142/9781860944079_0005, arxiv:cond-mat/9707001v2.
  16. A. Kremen, H. Khan, Y. L. Loh, T. I. Baturina, N. Trivedi, A. Frydman, B. Kalisky: Imaging quantum fluctuations near criticality. In: nature physics. Band 14, 20. August 2018, S. 1205–1210, doi:10.1038/s41567-018-0264-z, arxiv:1806.10972.
  17. Bar-Ilan University, 21.08.2018 – NPO: Quantenfluktuationen sichtbar gemacht. In: scinexx. MMCD NEW MEDIA, Düsseldorf (scinexx.de [abgerufen am 15. März 2021]).
  18. Yu Haocun, L. McCuller, M. Tse, N. Kijbunchoo, L. Barsotti, N. Mavalvala: Quantum correlations between light and the kilogram-mass mirrors of LIGO. In: Nature. Band 583, Nr. 7814, Juli 2020, ISSN 1476-4687, S. 43–47, doi:10.1038/s41586-020-2420-8, PMID 32612226, arxiv:2002.01519 (englisch).
  19. Quantum fluctuations can jiggle objects on the human scale. In: phys.org. Abgerufen im März 2021 (englisch).
  20. Nadja Prodbregar: Quantenrauschen bewegt auch uns. In: Scinexx Das Wissensmagazin. MMCD New Media, Düsseldorf Juli 2020 (scinexx.de [abgerufen am 1. Dezember 2022]).
  21. B. Abi et al.: Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. In: Physical Review Letters. Band 126, Nr. 14, April 2021, doi:10.1103/PhysRevLett.126.141801, arxiv:2104.03281 (englisch).
  22. Sz. Borsanyi, Z. Fodor, , J. N. Guenther, C. Hoelbling, S. D. Katz, Lellouch, T. Lippert, K. Miura, , L. Parato, K. K. Szabo, F. Stokes, B. C. Toth, Cs. Torok, L. Varnhorst: Leading hadronic contribution to the muon magnetic moment from lattice QCD. In: nature. Band 593, 7. April 2021, S. 51–55, doi:10.1038/s41586-021-03418-1, arxiv:2002.12347.
  23. Josef M. Gaßner, München: Muon g-2 Experiment. Abgerufen im April 2021.
  24. Henning Genz, Karlsruhe: Vakuum – 3.6 Fluktuationen. Abgerufen im Januar 2017.