Land Bayern

This page provides supplementary data to the article properties of water.

Further comprehensive authoritative data can be found at the NIST Chemistry WebBook page on thermophysical properties of fluids.[1]

Structure and properties

Structure and properties
Index of refraction, nD1.333 at 20 °C
Dielectric constant[2]

88.00 at 0 °C
86.04 at 5 °C
84.11 at 10 °C
82.22 at 15 °C
80.36 at 20 °C
78.54 at 25 °C
76.75 at 30 °C
75.00 at 35 °C
73.28 at 40 °C
71.59 at 45 °C
69.94 at 50 °C
66.74 at 60 °C
63.68 at 70 °C
60.76 at 80 °C
57.98 at 90 °C
55.33 at 100 °C

Bond strength492.215 kJ/mol O–H bond dissociation energy[3]
Bond length95.87 pm (equilibrium)[4]
Bond angle104.48° (equilibrium) [5][6]
Magnetic susceptibility−9.04 × 10−6 volume SI units[7]

Thermodynamic properties

Phase behavior
Triple point273.16 K (0.01 °C), 611.73 Pa
Critical point647 K (374 °C), 22.1 MPa
Enthalpy change
of fusion at 273.15 K
, ΔfusH
6.01 kJ/mol
Entropy change of fusion
at 273.15 K, 1 bar
, ΔfusS
22.0 J/(mol·K)
Std enthalpy change
of vaporization
, ΔvapHo
44.0 kJ/mol
Enthalpy change of
vaporization at 373.15 K
, ΔvapH
40.68 kJ/mol
Std entropy change
of vaporization
, ΔvapSo
118.89 J/(mol·K)
Entropy change of
vaporization at 373.15 K
, ΔvapS
109.02 J/(mol·K)
Enthalpy change of
sublimation at 273.15 K, ΔsubH
51.1 kJ/mol
Std entropy change of sublimation
at 273.15 K, 1 bar, ΔsubS
~144 J/(mol·K)
Molal freezing point constant−1.858 °C kg/mol
Molal boiling point constant0.512 °C kg/mol
Solid properties
Std enthalpy change
of formation
, ΔfHosolid
−291.83 kJ/mol
Standard molar entropy,
Sosolid
41 J/(mol K)
Heat capacity, cp12.2 J/(mol K) at −200 °C
15.0 J/(mol K) at −180 °C
17.3 J/(mol K) at −160 °C
19.8 J/(mol K) at −140 °C
24.8 J/(mol K) at −100 °C
29.6 J/(mol K) at −60 °C
32.77 J/(mol K) at −38.3 °C
33.84 J/(mol K) at −30.6 °C
35.20 J/(mol K) at −20.8 °C
36.66 J/(mol K) at −11.0 °C
37.19 J/(mol K) at −4.9 °C
37.84 J/(mol K) at −2.2 °C
Liquid properties
Std enthalpy change
of formation
, ΔfHoliquid
−285.83 kJ/mol
Standard molar entropy,
Soliquid
69.95 J/(mol K)
Heat capacity, cp75.97 J/(mol K) and 4.2176 J/(g·K) at 0 °C
75.42 J/(mol K) and 4.1921 J/(g·K) at 10 °C
75.33 J/(mol K) and 4.1818 J/(g·K) at 20 °C
75.28 J/(mol K) and 4.1814 J/(g·K) at 25 °C
75.26 J/(mol K) and 4.1784 J/(g·K) at 30 °C
75.26 J/(mol K) and 4.1785 J/(g·K) at 40 °C
75.30 J/(mol K) and 4.1806 J/(g·K) at 50 °C
75.37 J/(mol K) and 4.1843 J/(g·K) at 60 °C
75.46 J/(mol K) and 4.1895 J/(g·K) at 70 °C
75.58 J/(mol K) and 4.1963 J/(g·K) at 80 °C
75.74 J/(mol K) and 4.2050 J/(g·K) at 90 °C
75.94 J/(mol K) and 4.2159 J/(g·K) at 100 °C
Gas properties
Std enthalpy change
of formation
, ΔfHogas
−241.83 kJ/mol
Standard molar entropy,
Sogas
188.84 J/(mol K)
Heat capacity, cp36.5 J/(mol K) at 100 °C
36.1 J/(mol K) at 200 °C
36.2 J/(mol K) at 400 °C
37.9 J/(mol K) at 700 °C
41.4 J/(mol K) at 1000 °C
Heat capacity, cv27.5 J/(mol K) at 100 °C
27.6 J/(mol K) at 200 °C
27.8 J/(mol K) at 400 °C
29.5 J/(mol K) at 700 °C
33.1 J/(mol K) at 1000 °C
Heat capacity ratio,
γ = cp/cv
1.324 at 100 °C
1.310 at 200 °C
1.301 at 400 °C
1.282 at 700 °C
1.252 at 1000 °C
van der Waals' constantsa = 553.6 L2 kPa/mol2
b = 0.03049 L/mol

Liquid physical properties

Temperature dependence of the surface tension of pure water
Temperature dependence of the density of ice and water
Velocity of sound in water
c in distilled water at 25 °C1498 m/s
c at other temperatures[8]1403 m/s at 0 °C
1427 m/s at 5 °C
1447 m/s at 10 °C
1481 m/s at 20 °C
1507 m/s at 30 °C
1526 m/s at 40 °C
1541 m/s at 50 °C
1552 m/s at 60 °C
1555 m/s at 70 °C
1555 m/s at 80 °C
1550 m/s at 90 °C
1543 m/s at 100 °C
Density[9][2][page needed]
0.983854 g/cm3 at −30 °C0.99221 g/cm3 at 40 °C
0.993547 g/cm3 at −20 °C0.99022 g/cm3 at 45 °C
0.998117 g/cm3 at −10 °C0.98804 g/cm3 at 50 °C
0.9998395 g/cm3 at 0 °C0.98570 g/cm3 at 55 °C
0.999972 g/cm3 at 3.984 °C[10]
0.9999720 g/cm3 at 4 °C0.98321 g/cm3 at 60 °C
0.99996 g/cm3 at 5 °C0.98056 g/cm3 at 65 °C
0.9997026 g/cm3 at 10 °C0.97778 g/cm3 at 70 °C
0.9991026 g/cm3 at 15 °C0.97486 g/cm3 at 75 °C
0.9982071 g/cm3 at 20 °C0.97180 g/cm3 at 80 °C
0.9977735 g/cm3 at 22 °C0.96862 g/cm3 at 85 °C
0.9970479 g/cm3 at 25 °C0.96531 g/cm3 at 90 °C
0.9956502 g/cm3 at 30 °C0.96189 g/cm3 at 95 °C
0.99403 g/cm3 at 35 °C0.95835 g/cm3 at 100 °C
The values below 0 °C refer to supercooled water.
Viscosity[11]
1.7921 mPa·s (cP) at 0 °C0.5494 mPa·s at 50 °C
1.5188 mPa·s at 5 °C0.5064 mPa·s at 55 °C
1.3077 mPa·s at 10 °C0.4688 mPa·s at 60 °C
1.1404 mPa·s at 15 °C0.4355 mPa·s at 65 °C
1.0050 mPa·s at 20 °C0.4061 mPa·s at 70 °C
0.8937 mPa·s at 25 °C0.3799 mPa·s at 75 °C
0.8007 mPa·s at 30 °C0.3635 mPa·s at 80 °C
0.7225 mPa·s at 35 °C0.3355 mPa·s at 85 °C
0.6560 mPa·s at 40 °C0.3165 mPa·s at 90 °C
0.5988 mPa·s at 45 °C0.2994 mPa·s at 95 °C
0.2838 mPa·s at 100 °C
Surface tension[12]
75.64 dyn/cm at 0 °C69.56 dyn/cm at 40 °C
74.92 dyn/cm at 5 °C68.74 dyn/cm at 45 °C
74.22 dyn/cm at 10 °C67.91 dyn/cm at 50 °C
73.49 dyn/cm at 15 °C66.18 dyn/cm at 60 °C
72.75 dyn/cm at 20 °C64.42 dyn/cm at 70 °C
71.97 dyn/cm at 25 °C62.61 dyn/cm at 80 °C
71.18 dyn/cm at 30 °C60.75 dyn/cm at 90 °C
70.38 dyn/cm at 35 °C58.85 dyn/cm at 100 °C
Electrical conductivity of highly purified water at saturation pressure[13]
Temperature, °CConductivity, μS/m
0.011.15
255.50
10076.5
200299
300241

Water/steam equilibrium properties

Vapor pressure formula for steam in equilibrium with liquid water:[14]

where P is equilibrium vapor pressure in kPa, and T is temperature in kelvins.

For T = 273 K to 333 K: A = 7.2326; B = 1750.286; C = 38.1.

For T = 333 K to 423 K: A = 7.0917; B = 1668.21; C = 45.1.

Steam table[15]
Temperature
(°C)
Pressure
(kPa)
H of liquid
(J/g)
ΔvapH
(J/g)
Wvap
(J/g)
ρ of vapor
(kg/m3)
00.6120.002496.5126.00.004845
101.22742.02473.5130.50.009398
202.33683.82450.9135.10.01728
304.242125.62427.9139.70.03036
407.370167.22404.9144.20.05107
5012.33209.02381.4148.70.08285
6019.90250.82357.6153.00.1300
7031.15292.72332.9157.30.1979
8046.12334.62307.7161.50.2931
9070.10376.62282.6165.50.4232
100101.32419.02256.3169.40.5974
110143.27460.82229.5173.10.8264
120198.50503.22201.4176.71.121
130270.13545.82172.5180.21.497
140361.4588.52142.8183.21.967
150476.0631.52111.8186.12.548
160618.1674.72080.0188.73.263
170792.0718.52047.0190.64.023
1801002.7762.52012.2192.85.165
1901254.9807.01975.8194.56.402
2001554.3851.91937.3195.67.868
2101907.9897.51897.5196.39.606
221.12369.8948.51850.2196.611.88
229.42769.6987.91812.5196.213.87
240.63381.11040.61759.4195.116.96
248.93904.11080.31715.8193.719.66
260.04695.91134.81653.9190.823.84
271.15603.41195.91586.5186.928.83
279.46366.51240.71532.5183.333.18
290.67506.21302.31456.3177.439.95
298.98463.91350.01394.8172.245.93
310.09878.01415.71307.7164.255.25
321.1114611483.91212.7154.566.58
329.4127851537.91133.2145.676.92
340.6147271617.91007.6130.994.25
348.9163311687.0892.0117.0111.5
360.0186821797.0694.091.0145.3
371.1213491968.3365.047.0214.5
374.4222422151.200306.8
Temperature
(°C)
Pressure
(kPa)
H of liquid
(J/g)
ΔvapH
(J/g)
Wvap
(J/g)
ρ of vapor
(kg/m3)

Data in the table above is given for water–steam equilibria at various temperatures over the entire temperature range at which liquid water can exist. Pressure of the equilibrium is given in the second column in kPa. The third column is the heat content of each gram of the liquid phase relative to water at 0 °C. The fourth column is the heat of vaporization of each gram of liquid that changes to vapor. The fifth column is the work PΔV done by each gram of liquid that changes to vapor. The sixth column is the density of the vapor.

Melting point of ice at various pressures

Data obtained from CRC Handbook of Chemistry and Physics 44th ed., p. 2390.

Pressure kPaTemp. °C
101.3250.0
32950−2.5
60311−5.0
87279−7.5
113267−10.0
138274−12.5
159358−15.0
179952−17.5
200251−20.0
215746−22.1

Table of various forms of ice

Properties of various forms of ice[16]
Ice
form
Density
g/cm3
Crystal
structure
Triple
points
TP temp °CTP pressure
MPa
Ih0.92hexagonalLq, Vap, Ih0.010.000612
Lq, Ih, III−22.0207.5
Ih, II, III−34.7212.9
Ic0.92cubic
II1.17rhombohedralIh, II, III−34.7212.9
II, III, V−24.3344.3
II, V, VI−55 (est)620
III1.14tetragonalLq, Ih, III−22.0207.5
Lq, III, V−17346.3
Ih, II, III−34.7212.9
II, III, V−24.3344.3
IV1.27rhombohedral
V1.23monoclinicLq, III, V−17346.3
Lq, V, VI0.16625.9
II, III, V−24.3344.3
II, V, VI−55 (est)620
VI1.31tetragonalLq, V, VI0.16625.9
Lq, VI, VII81.62200
II, V, VI−55 (est)620
VI, VII, VIII≈52100
VII1.50cubicLq, VI, VII81.62200
VI, VII, VIII≈52100
VII, VIII, X−17362000
VIII1.46tetragonalVI, VII, VIII≈52100
VII, VIII, X−17362000
IX1.16tetragonal
X2.46cubicVII, VIII, X−17362000
XI0.92orthorhombicVap, Ih, XI−201.50 (expected)
XII1.29tetragonal
XIII1.23monoclinic
XIV1.29orthorhombic

Ice XI triple point is theoretical and has never been obtained

Phase diagram

Log-lin pressure–temperature phase diagram of water. The Roman numerals indicate various ice phases.

Water with dissolved NaCl

Water–NaCl phase diagram
Properties of water–NaCl mixtures [17]
NaCl, wt%Teq, °Cρ, g/cm3nη, mPa·s
000.999841.3331.002
0.5−0.31.00181.33391.011
1−0.591.00531.33471.02
2−1.191.01251.33651.036
3−1.791.01961.33831.052
4−2.411.02681.341.068
5−3.051.0341.34181.085
6−3.71.04131.34351.104
7−4.381.04861.34531.124
8−5.081.05591.3471.145
9−5.811.06331.34881.168
10−6.561.07071.35051.193
12−8.181.08571.35411.25
14−9.941.10081.35761.317
16−11.891.11621.36121.388
18−14.041.13191.36481.463
20−16.461.14781.36841.557
22−19.181.1641.37211.676
23.3−21.1
23.7−17.3
24.9−11.1
26.1−2.7
26.280
26.3210
26.4120
26.4525
26.5230
26.6740
26.8450
27.0360
27.2570
27.580
27.7890
28.05100

Note: ρ is density, n is refractive index at 589 nm,[clarification needed] and η is viscosity, all at 20 °C; Teq is the equilibrium temperature between two phases: ice/liquid solution for Teq < 0–0.1 °C and NaCl/liquid solution for Teq above 0.1 °C.

Self-ionization

°C −35  0  25  60  300 (~50 MPa)
pKw[18] 17  14.9  14.0  13.0  12 

Spectral data

UV-Vis
λmax? nm
Extinction coefficient, ε?
IR
Major absorption bands[19]
vapor:ν1 = 3657.05,ν2 = 1594.75,ν3 = 3755.93cm−1
liquid:ν1 = 3280,ν2 = 1644,ν3 = 3490cm−1
hexagonal ice:ν1 = 3085,ν2 = 1650,ν3 = 3220cm−1
NMR
Proton NMR 4.79 ppm in D2O ; 1.56 ppm in CDCl3 ; 0.40 ppm in C6D6 ; 4.87 in CD3OD[20]
Carbon-13 NMR N/A
Other NMR data 
MS
Masses of
main fragments
 

Self-diffusion coefficients

Experimental self-diffusion coefficients at various temperatures[21]
Temperature in °CCoefficients in 10−9 m2/s
01.099
11.138
41.261
51.303
101.525
151.765
202.023
252.299
302.594
352.907
403.238
453.588
503.956
564.423
604.748
705.615
806.557
907.574
1008.667

Additional data translated from German "Wasser (Stoffdaten)" page

The data that follows was copied and translated from the German language Wikipedia version of this page (which has moved to here). It provides supplementary physical, thermodynamic, and vapor pressure data, some of which is redundant with data in the tables above, and some of which is additional.

Physical and thermodynamic tables

In the following tables, values are temperature-dependent and to a lesser degree pressure-dependent, and are arranged by state of aggregation (s = solid, lq = liquid, g = gas), which are clearly a function of temperature and pressure. All of the data were computed from data given in "Formulation of the Thermodynamic Properties of Ordinary Water Substance for Scientific and General Use" (IAPWS , 1984) (obsolete as of 1995).[22] This applies to:

Standard conditions

In the following table, material data are given for standard pressure of 0.1 MPa (equivalent to 1 bar). Up to 99.63 °C (the boiling point of water at 0.1 MPa), at this pressure water exists as a liquid. Above that, it exists as water vapor. Note that the boiling point of 100.0 °C is at a pressure of 0.101325 MPa (1 atm), which is the average atmospheric pressure.

 
Water/steam data table at standard pressure (0.1 MPa)
T °CV
dm3/kg
H
kJ/kg
U
kJ/kg
S
kJ/(kg·K)
cp
kJ/(kg·K)
γ
10−3/K
λ
mW / (m·K)
η
μPa·s
σ   
mN/m
0lq1.00020.06−0.04−0.00014.228−0.080561.0179275.65
51.000021.121.00.0764.2000.011570.6151874.95
101.000342.142.00.1514.1880.087580.0130674.22
151.000963.062.90.2244.1840.152589.4113773.49
201.001883.983.80.2964.1830.209598.4100172.74
251.0029104.8104.70.3674.1830.259607.2890.471.98
301.0044125.8125.70.4374.1830.305615.5797.771.20
351.0060146.7146.60.5054.1830.347623.3719.670.41
401.0079167.6167.50.5724.1820.386630.6653.369.60
451.0099188.5188.40.6384.1820.423637.3596.368.78
501.0121209.4209.30.7044.1810.457643.6547.167.95
601.0171251.2251.10.8314.1830.522654.4466.666.24
701.0227293.1293.00.9554.1870.583663.1404.164.49
801.0290335.0334.91.0754.1940.640670.0354.562.68
901.0359377.0376.91.1934.2040.696675.3314.660.82
99.63lq1.0431417.5417.41.3034.2170.748679.0283.058.99
g1694.3267525057.3592.0432.88525.0512.26
100g1696.1267525067.3612.0422.88125.0812.2758.92
2002172.3287426577.8331.9752.10033.2816.1837.68
3002638.8307328108.2152.0131.76143.4220.2914.37
5003565.5348831318.8342.1351.29766.97028.57
7504721.0404335719.4552.3080.978100.3038.48
10005875.5464240549.9782.4780.786136.347.66
The values for surface tension for the liquid section of the table are for a liquid/air interface. Values for the gas section of the table are for a liquid/saturated steam interface.

Triple point

In the following table, material data are given with a pressure of 611.7 Pa (equivalent to 0.006117 bar). Up to a temperature of 0.01 °C, the triple point of water, water normally exists as ice, except for supercooled water, for which one data point is tabulated here. At the triple point, ice can exist together with both liquid water and vapor. At higher temperatures, the data are for water vapor only.

 
Water/steam data table at triple point pressure (0.0006117 MPa)
T °CV
dm3/kg
H
kJ/kg
U
kJ/kg
S
kJ/(kg·K)
cp
kJ/(kg·K)
γ
10−3/K
λ
mW / (m·K)
η
μPa·s
0lq1.0002−0.04−0.04−0.00024.339−0.081561.01792
0.01s1.0908−333.4−333.4−1.2211.930.12180
lq1.00020.0004.229−0.080561.01791
g205986250023749.1541.8683.67217.079.22
5g209913250923819.1881.8673.60517.339.34
10213695251923889.2221.8673.54017.609.46
15217477252823959.2541.8683.47817.889.59
20221258253724029.2861.8683.41718.179.73
25225039254724099.3181.8693.35918.479.87
30228819255624169.3491.8693.30418.7810.02
35232598256524239.3801.8703.24919.1010.17
40236377257524309.4101.8713.19719.4310.32
45240155258424379.4391.8723.14719.7710.47
50243933259324449.4691.8743.09820.1110.63
60251489261224599.5261.8763.00420.8210.96
70259043263124739.5811.8802.91621.5611.29
80266597265024879.6351.8832.83322.3111.64
90274150266925019.6881.8872.75523.1011.99
100281703268825159.7391.8912.68123.9012.53
2003572162879266110.1941.9402.11432.8916.21
3004327213076281110.5712.0001.74543.2620.30
5005837253489313211.1882.1311.29366.9028.57
7507724774043357111.8082.3070.977100.2038.47
10009612274642405412.3312.4780.785136.3047.66

Saturated vapor pressure

The following table is based on different, complementary sources and approximation formulas, whose values are of various quality and accuracy. The values in the temperature range of −100 °C to 100 °C were inferred from D. Sunday (1982) and are quite uniform and exact. The values in the temperature range of the boiling point of water up to the critical point (100 °C to 374 °C) are drawn from different sources and are substantially less accurate; hence they should be used only as approximate values.[23][24][25][26]

To use the values correctly, consider the following points:

  • The values apply only to smooth interfaces and in the absence other gases or gas mixtures such as air. Hence they apply only to pure phases and need a correction factor for systems in which air is present.
  • The values were not computed according formulas widely used in the US, but using somewhat more exact formulas (see below), which can also be used to compute further values in the appropriate temperature ranges.
  • The saturated vapor pressure over water in the temperature range of −100 °C to −50 °C is only extrapolated [Translator's note: Supercooled liquid water is not known to exist below −42 °C].
  • The values have various units (Pa, hPa or bar), which must be considered when reading them.

Formulas

The table values for −100 °C to 100 °C were computed by the following formulas, where T is in kelvins and vapor pressures, Pw and Pi, are in pascals.

Over liquid water

loge(Pw) = −6094.4642 T−1 + 21.1249952 − 2.724552×10−2 T + 1.6853396×10−5 T2 + 2.4575506 loge(T)

For temperature range: 173.15 K to 373.15 K or equivalently −100 °C to 100 °C

Over ice

loge(Pi) = −5504.4088 T−1 − 3.5704628 − 1.7337458×10−2 T + 6.5204209×10−6 T2 + 6.1295027 loge(T)

For temperature range: 173.15 K to 273.15 K or equivalently −100 °C to 0 °C

At triple point

An important basic value, which is not registered in the table, is the saturated vapor pressure at the triple point of water. The internationally accepted value according to measurements of Guildner, Johnson and Jones (1976) amounts to:

Pw(ttp = 0.01 °C) = 611.657 Pa ± 0.010 Pa at (1 − α) = 99%
 
Values of saturated vapor pressure of water
Temp.
T in °C
Pi(T) over ice
in Pa
Pw(T) over water
in Pa
Temp.
T in °C
Pw(T) over water
in hPa
Temp.
T in °C
P(T)
in bar
Temp.
T in °C
P(T)
in bar
Temp.
T in °C
P(T)
in bar
−1000.00139570.003630906.112131001.0120015.5530085.88
−990.00170940.004412116.570691011.0520115.8830187.09
−980.00208890.005348727.059491021.0920216.2130288.32
−970.00254700.006469237.580231031.1320316.5530389.57
−960.00309870.007806748.134671041.1720416.8930490.82
−950.00376170.009399658.724691051.2120517.2430592.09
−940.00455690.01129369.352221061.2520617.6030693.38
−930.00550870.013538710.01931071.3020717.9630794.67
−920.00664550.016195810.72801081.3420818.3230895.98
−910.00800080.019333911.48061091.3920918.7030997.31
−900.00961320.0230311012.27941101.4321019.0731098.65
−890.0115280.0273811113.12671111.4821119.46311100.00
−880.0137970.0324891214.02511121.5321219.85312101.37
−870.0164820.0384741314.97721131.5821320.25313102.75
−860.0196530.0454731415.98561141.6421420.65314104.15
−850.023390.0536451517.05321151.6921521.06315105.56
−840.0277880.0631661618.18291161.7521621.47316106.98
−830.0329540.0742411719.37781171.8121721.89317108.43
−820.0390110.0871011820.64091181.8621822.32318109.88
−810.0461020.102011921.97571191.9321922.75319111.35
−800.0543880.119252023.38541201.9922023.19320112.84
−790.0640570.139182124.87371212.0522123.64321114.34
−780.0753200.162152226.44421222.1222224.09322115.86
−770.0884190.188602328.10061232.1822324.55323117.39
−760.103630.219012429.84701242.2522425.02324118.94
−750.121270.253912531.68741252.3222525.49325120.51
−740.141680.293902633.62601262.4022625.98326122.09
−730.165280.339662735.66711272.4722726.46327123.68
−720.192520.391932837.81541282.5522826.96328125.30
−710.223910.451562940.07541292.6222927.46329126.93
−700.260040.519483042.45201302.7023027.97330128.58
−690.301560.596723144.95021312.7823128.48331130.24
−680.349210.684463247.57521322.8723229.01332131.92
−670.403830.783973350.33221332.9523329.54333133.62
−660.466330.896683453.22671343.0423430.08334135.33
−650.537781.02423556.26451353.1323530.62335137.07
−640.619331.16823659.45131363.2223631.18336138.82
−630.712311.33063762.79331373.3223731.74337140.59
−620.818171.51363866.29561383.4223832.31338142.37
−610.938541.71953969.96751393.5123932.88339144.18
−601.07531.95094073.81271403.6224033.47340146.00
−591.23032.21064177.83191413.7224134.06341147.84
−581.40602.50184282.05361423.8224234.66342149.71
−571.60492.82774386.46331433.9324335.27343151.58
−561.82963.19224491.07571444.0424435.88344153.48
−552.08333.59934595.89841454.1624536.51345155.40
−542.36944.053546100.9391464.2724637.14346157.34
−532.69174.559747106.2061474.3924737.78347159.30
−523.05425.123148111.7081484.5124838.43348161.28
−513.46185.749649117.4521494.6424939.09349163.27
−503.91936.445450123.44781504.7625039.76350165.29
−494.43247.217451129.70421514.8925140.44351167.33
−485.00738.072952136.23041525.0225241.12352169.39
−475.65069.020153143.03571535.1625341.81353171.47
−466.369910.06854150.12981545.2925442.52354173.58
−457.173211.22555157.52261555.4325543.23355175.70
−448.069512.50356165.22431565.5825643.95356177.85
−439.068513.91157173.24511575.7225744.68357180.02
−4210.18115.46358181.59591585.8725845.42358182.21
−4111.41917.17059190.28741596.0325946.16359184.43
−4012.79419.04860199.33091606.1826046.92360186.66
−3914.32121.11061208.73781616.3426147.69361188.93
−3816.01623.37262218.51981626.5026248.46362191.21
−3717.89325.85363228.68881636.6726349.25363193.52
−3619.97328.57064239.25721646.8426450.05364195.86
−3522.27331.54465250.23731657.0126550.85365198.22
−3424.81634.79566261.64211667.1826651.67366200.61
−3327.62438.34767273.48451677.3626752.49367203.02
−3230.72342.22568285.77811687.5526853.33368205.47
−3134.14046.45369298.53631697.7326954.17369207.93
−3037.90351.06070311.77311707.9227055.03370210.43
−2942.04656.07771325.50291718.1127155.89371212.96
−2846.60161.53472339.74011728.3127256.77372215.53
−2751.60767.46673354.49951738.5127357.66373218.13
−2657.10473.90974369.79631748.7227458.56374220.64
−2563.13480.90275385.64591758.9227559.46374.15221.20
−2469.74588.48576402.06411769.1427660.38
−2376.98796.70177419.06691779.3527761.31
−2284.914105.6078436.67081789.5727862.25
−2193.584115.2279454.89231799.8027963.20
−20103.06125.6380473.748518010.0328064.17
−19113.41136.8881493.256718110.2628165.14
−18124.70149.0182513.434518210.5028266.12
−17137.02162.1183534.300018310.7428367.12
−16150.44176.2384555.871418410.9828468.13
−15165.06191.4485578.167318511.2328569.15
−14180.97207.8186601.206818611.4928670.18
−13198.27225.4387625.009018711.7528771.22
−12217.07244.3788649.593618812.0128872.27
−11237.49264.7289674.980618912.2828973.34
−10259.66286.5790701.190419012.5529074.42
−9283.69310.0291728.243419112.8329175.51
−8309.75335.1692756.160819213.1129276.61
−7337.97362.1093784.963919313.4029377.72
−6368.52390.9594814.674319413.6929478.85
−5401.58421.8495845.314119513.9929579.99
−4437.31454.8896876.905719614.2929681.14
−3475.92490.1997909.471819714.6029782.31
−2517.62527.9398943.035519814.9129883.48
−1562.62568.2299977.620319915.2229984.67
0611.153611.2131001013.2520015.5530085.88
Temp.
T in °C
Pi(T) over ice
in Pa
Pw(T) over water
in Pa
Temp.
T in °C
Pw(T) over water
in hPa
Temp.
T in °C
P(T)
in bar
Temp.
T in °C
P(T)
in bar
Temp.
T in °C
P(T)
in bar

Magnetic susceptibility

Accepted standardized value of the magnetic susceptibility of water at 20 °C (room temperature) is −12.97 cm3/mol.[27]

Accepted standardized value of the magnetic susceptibility of water at 20 °C (room temperature) is −0.702 cm3/g.[27]

Magnetic susceptibility of water at different temperatures[27]
Isotopolog,
state
Temperature
in K
Magnetic susceptibiliy
in cm3/mol
H2O(g)>373−13.1
H2O(l)373−13.09
H2O(l)293−12.97
H2O(l)273−12.93
H2O(s)273−12.65
H2O(s)223−12.31
DHO(l)302−12.97
D2O(l)293−12.76
D2O(l)276.8−12.66
D2O(s)276.8−12.54
D2O(s)213−12.41
  This box:   

See also

References

  1. ^ "Thermophysical Properties of Fluid Systems". NIST Chemistry WebBook. National Institute of Standards and Technology. doi:10.18434/T4D303. NIST Standard Reference Database Number 69.
  2. ^ a b Lide 2004, p. 6-15.
  3. ^ Maksyutenko, Pavlo; Rizzo, Thomas R.; Boyarkin, Oleg V. (2006). "A direct measurement of the dissociation energy of water". The Journal of Chemical Physics. 125 (18): 181101. Bibcode:2006JChPh.125r1101M. doi:10.1063/1.2387163. PMID 17115729.
  4. ^ Cook, R; Delucia, F; Helminger, P (1974). "Molecular force field and structure of water: Recent microwave results". Journal of Molecular Spectroscopy. 53 (1): 62–76. Bibcode:1974JMoSp..53...62C. doi:10.1016/0022-2852(74)90261-6.
  5. ^ Hoy, AR; Bunker, PR (1979). "A precise solution of the rotation bending Schrödinger equation for a triatomic molecule with application to the water molecule". Journal of Molecular Spectroscopy. 74 (1): 1–8. Bibcode:1979JMoSp..74....1H. doi:10.1016/0022-2852(79)90019-5.
  6. ^ "List of experimental bond angles of type aHOH". Computational Chemistry Comparison and Benchmark DataBase.
  7. ^ Griffiths, David Jeffery (1999). Introduction to Electrodynamics (3rd ed.). Prentice Hall. p. 275. ISBN 978-0-13-919960-8.
  8. ^ "Water and the Speed of Sound". www.engineeringtoolbox.com. Retrieved 2008-04-29.
  9. ^ Dean & Lange 1999, p. 1199: Due to the old definition of liter used at the time, the data from the Handbook was converted from old g/ml to g/cm3, by multiplying by 0.999973
  10. ^ Franks 2012, p. 376.
  11. ^ Lide 2004, p. 6-201.
  12. ^ Dean & Lange 1999, p. 1663.
  13. ^ Revised Release on Viscosity and Thermal Conductivity of Heavy Water Substance, The International Association for the Properties of Water and Steam Lucerne, Switzerland, August 2007.
  14. ^ Dean & Lange 1999, p. 1436.
  15. ^ Dean & Lange 1999, p. 1476.
  16. ^ Martin Chaplin. "Water Phase Diagram". London South Bank University. Retrieved 2022-05-27.
  17. ^ Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. pp. 8–71, 8–116. ISBN 0-8493-0486-5.
  18. ^ Martin Chaplin. "Water ionization". London South Bank University. Retrieved 2022-05-27.
  19. ^ Martin Chaplin. "Water Absorption Spectrum". London South Bank University. Retrieved 2022-05-27.
  20. ^ Fulmer, Gregory R.; Miller, Alexander J. M.; Sherden, Nathaniel H.; Gottlieb, Hugo E.; Nudelman, Abraham; Stoltz, Brian M.; Bercaw, John E.; Goldberg, Karen I. (2010). "NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist" (PDF). Organometallics. 29 (9): 2176–2179. doi:10.1021/om100106e. ISSN 0276-7333.
  21. ^ Holz, Manfred; Heil, Stefan R.; Sacco, Antonio (2000). "Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1
    H
    NMR PFG measurements"
    . Physical Chemistry Chemical Physics. 2 (20): 4740–4742. Bibcode:2000PCCP....2.4740H. doi:10.1039/b005319h. ISSN 1463-9084.
  22. ^ "IAPWS". Main IAPWS Thermodynamic Property Formulations. Retrieved 4 May 2023. In 1995, IAPWS approved a new formulation of the thermodynamic properties of water and steam for general and scientific use. This replaced the 1984 formulation of Haar, Gallagher and Kell, and now serves as the international standard for water's thermodynamic properties.
  23. ^ Guildner, L. A.; Johnson, D. P.; Jones, F. E. (1976). "Vapor Pressure of Water at Its Triple Point: Highly Accurate Value". Science. 191 (4233): 1261. Bibcode:1976Sci...191.1261G. doi:10.1126/science.191.4233.1261. PMID 17737716. S2CID 37399612.
  24. ^ Klaus Scheffler (1981): Wasserdampftafeln: thermodynam. Eigenschaften von Wasser u. Wasserdampf bis 800°C u. 800 bar (Water Vapor Tables: Thermodynamic Characteristics of Water and Water Vapor to 800°C and 800 bar), Berlin [u.a.]ISBN 3-540-10930-7
  25. ^ D. Sonntag und D. Heinze (1982): Sättigungsdampfdruck- und Sättigungsdampfdichtetafeln für Wasser und Eis. (Saturated Vapor Pressure and Saturated Vapor Density Tables for Water and Ice)(1. Aufl.), VEB Deutscher Verlag für Grundstoffindustrie
  26. ^ Ulrich Grigull, Johannes Staub, Peter Schiebener (1990): Steam Tables in SI-Units – Wasserdampftafeln. Springer-Verlagdima gmbh
  27. ^ a b c Weast, Robert (1983–1984). CRC, Handbook of Chemistry and Physics 64th edition. Boca Raton, Florida: CRC publishing. pp. E-119. ISBN 0-8493-0464-4.

Bibliography

Wissen

Automated Chatbot

Data Security

Virtual Reality

Communication

Support

Company

About Us

Services

Features

Our Pricing

Latest News

© 2024 campus1.de