„Twisted-Pair-Kabel“ – Versionsunterschied

[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
→‎FTP: Logik, das ist imho ein weiterer Vorteil, kein Gegensatz (den "jedoch" andeutet); unexakter Ausdruck
(11 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 67: Zeile 67:


=== UTP ===
=== UTP ===
Neue Bezeichnung nach ISO/IEC-11801 (2002)E: U/UTP
Neue Bezeichnung nach '''[[International Organization for Standardization|ISO]]/[[International Electrotechnical Commission|IEC]]''' 11801 (2002)E: U/UTP


Kabel mit ungeschirmten Paaren und ohne Gesamtschirm (''Unshielded Twisted Pair''). Im deutschsprachigen Raum werden UTP-Kabel kaum eingesetzt, weltweit sind es jedoch die meistverwendeten Kabel für [[Ethernet]]-LANs (> 90%). Für Übertragungsverfahren bis Gigabit-Ethernet reicht ein UTP-Kabel der Kategorie 5e aus. Erst für zukünftige Techniken werden geschirmte Kabel benötigt (10-Gigabit-Ethernet), aber auch hier wird es einen Standard geben, der mit UTP-Kabeln funktioniert – allerdings mit der Einschränkung, dass nur geringere Reichweiten möglich sein werden. Im Gespräch sind bis zu 50 m auf UTP-Kabeln gegenüber 90 m auf STP-Kabeln.
Kabel mit ungeschirmten Paaren und ohne Gesamtschirm (''Unshielded Twisted Pair''). Im deutschsprachigen Raum werden UTP-Kabel kaum eingesetzt, weltweit sind es jedoch die meistverwendeten Kabel für [[Ethernet]]-LANs (> 90%). Für Übertragungsverfahren bis Gigabit-Ethernet reicht ein UTP-Kabel der Kategorie 5e aus. Erst für zukünftige Techniken werden geschirmte Kabel benötigt (10-Gigabit-Ethernet), aber auch hier wird es einen Standard geben, der mit UTP-Kabeln funktioniert – allerdings mit der Einschränkung, dass nur geringere Reichweiten möglich sein werden. Im Gespräch sind bis zu 50 m auf UTP-Kabeln gegenüber 90 m auf STP-Kabeln.
Zeile 82: Zeile 82:
Kabel mit Schirmung (''Shielded Twisted Pair'') in unterschiedlichen Varianten:
Kabel mit Schirmung (''Shielded Twisted Pair'') in unterschiedlichen Varianten:
==== FTP ====
==== FTP ====
Neue Bezeichnung nach ISO/IEC-11801 (2002)E: U/FTP
Neue Bezeichnung nach '''[[International Organization for Standardization|ISO]]/[[International Electrotechnical Commission|IEC]]'''-11801 (2002)E: U/FTP


Die Adernpaare sind mit einem metallischen Schirm (meist eine [[aluminium]] kaschierte Kunststofffolie) umgeben (''Foiled Twisted Pair''). Bei Schirmung jeweils eines Paares spricht man auch von ''PiMF'' ('''P'''aar '''i'''n '''M'''etall'''f'''olie), umfasst der Schirm zwei Paare, so wird das auch als ''ViMF'' ('''V'''ierer '''i'''n '''M'''etall'''f'''olie) bezeichnet. Die aktuelle Version der EN50173–1 bezeichnet diese Kabel mit FTP. Bis zur Kategorie 6 galt typischerweise, dass durch diese zusätzliche Schirmung das FTP-Kabel einen geringfügig größeren Außendurchmesser als UTP-Kabel hatte und etwas größere Biegeradien aufwies. (Siehe Hinweise ab Kategorie 6A bei UTP-Kabeln). Jedoch sind FTP-Kabel hinsichtlich Abstand gegenüber stromführenden Leitern, Alien Next-Effekten und gegenüber Querdruck in der Regel unempfindlicher und effizienter als UTP-Kabel. Das Übersprechen zwischen den einzelnen Adernpaaren kann jedoch durch die Schirmung verringert werden (siehe auch [[Elektromagnetische Verträglichkeit]]).
Die Adernpaare sind mit einem metallischen Schirm (meist eine [[aluminium]]kaschierte Kunststofffolie) umgeben (''Foiled Twisted Pair''). Bei Schirmung jeweils eines Paares spricht man auch von ''PiMF'' ('''P'''aar '''i'''n '''M'''etall'''f'''olie), umfasst der Schirm zwei Paare, so wird das auch als ''ViMF'' ('''V'''ierer '''i'''n '''M'''etall'''f'''olie) bezeichnet. Die aktuelle Version der EN50173–1 bezeichnet diese Kabel mit FTP<!-- ? Werden also PiMF oder ViMF oder beide mit "FTP" benant ? -->. Bis zur Kategorie 6 galt typischerweise, dass durch diese zusätzliche Schirmung das FTP-Kabel einen geringfügig größeren Außendurchmesser als UTP-Kabel hatte und etwas größere Biegeradien aufwies. (Siehe Hinweise ab Kategorie 6A bei UTP-Kabeln). Jedoch sind FTP-Kabel hinsichtlich Abstand gegenüber stromführenden Leitern, Alien Next-Effekten und gegenüber Querdruck in der Regel unempfindlicher und effizienter als UTP-Kabel. Das Übersprechen zwischen den einzelnen Adernpaaren kann durch die Schirmung ebenfalls verringert werden (siehe auch [[Elektromagnetische Verträglichkeit]]).
<br style="clear: both;" />
<br style="clear: both;" />


Zeile 91: Zeile 91:


==== S/FTP, F/FTP oder SF/FTP ====
==== S/FTP, F/FTP oder SF/FTP ====
Neue Bezeichnung nach ISO/IEC-11801 (2002)E: S/FTP (Geflecht), F/FTP (Folie), SF/FTP (Geflecht+Folie)
Neue Bezeichnung nach '''[[International Organization for Standardization|ISO]]/[[International Electrotechnical Commission|IEC]]'''-11801 (2002)E: S/FTP (Geflecht), F/FTP (Folie), SF/FTP (Geflecht+Folie)


Aufbau wie bei ''FTP'', jedoch mit zusätzlicher metallischer Gesamtschirmung um die Leiterbündel (''Screened Foiled Twisted Pair''). Der Gesamtschirm kann als Folie oder als Drahtgeflecht oder aus beidem zusammen ausgeführt sein. Gemäß aktueller EN50173 werden diese Kabel mit einem F für einen Folienschirm bezeichnet, ein S steht für einen Kupfergeflechtschirm, ein SF steht für einen Gesamtschirm aus Folie und Geflecht. Der Bedeckungsgrad des Geflechts sollte über 30% liegen, um gegenüber niederfrequenten Feldern eine hinreichende Abschirmung zu erzielen.
Aufbau wie bei ''FTP'', jedoch mit zusätzlicher metallischer Gesamtschirmung um die Leiterbündel (''Screened Foiled Twisted Pair''). Der Gesamtschirm kann als Folie oder als Drahtgeflecht oder aus beidem zusammen ausgeführt sein. Gemäß aktueller EN50173 werden diese Kabel mit einem F für einen Folienschirm bezeichnet, ein S steht für einen Kupfergeflechtschirm, ein SF steht für einen Gesamtschirm aus Folie und Geflecht. Der Bedeckungsgrad des Geflechts sollte über 30% liegen, um gegenüber niederfrequenten Feldern eine hinreichende Abschirmung zu erzielen.
Zeile 100: Zeile 100:


==== S/UTP, F/UTP oder SF/UTP ====
==== S/UTP, F/UTP oder SF/UTP ====
Neue Bezeichnung nach ISO/IEC-11801 (2002)E: S/UTP (Geflecht), F/UTP (Folie), SF/UTP (Geflecht+Folie)
Neue Bezeichnung nach '''[[International Organization for Standardization|ISO]]/[[International Electrotechnical Commission|IEC]]'''-11801 (2002)E: S/UTP (Geflecht), F/UTP (Folie), SF/UTP (Geflecht+Folie)


Aufbau wie bei ''UTP'', jedoch mit zusätzlicher metallischen Schirmung um die Leiterbündel (''Screened Unshielded Twisted Pair''). Der Gesamtschirm kann als Folie oder als Drahtgeflecht oder aus beidem zusammen ausgeführt sein. Gemäß aktueller EN50173 werden diese Kabel mit einem F für einen Folienschirm bezeichnet, ein S steht für einen Kupfergeflechtschirm, ein SF steht für einen Gesamtschirm aus Folie und Geflecht.
Aufbau wie bei ''UTP'', jedoch mit zusätzlicher metallischen Schirmung um die Leiterbündel (''Screened Unshielded Twisted Pair''). Der Gesamtschirm kann als Folie oder als Drahtgeflecht oder aus beidem zusammen ausgeführt sein. Gemäß aktueller EN50173 werden diese Kabel mit einem F für einen Folienschirm bezeichnet, ein S steht für einen Kupfergeflechtschirm, ein SF steht für einen Gesamtschirm aus Folie und Geflecht.
Zeile 154: Zeile 154:


==== Kategorie 6<sub>A</sub>/6A ====
==== Kategorie 6<sub>A</sub>/6A ====
[[Datei:Cat 6A Modul RM HR.jpg | thumb | right | Cat 6<sub>A</sub>-Modul]]
''Categorie 6 augmented'' (Cat-6<sub>A</sub> bzw. Cat-6A) ist ein Standard, der aus dem erhöhten Bandbreitenbedarf von 10-Gigabit-Ethernet (10GBASE-T) resultiert, für Übertragungsfrequenzen bis 500&nbsp;MHz ausgelegt und abwärtskompatibel zu bestehenden Netzwerk-Protokollen ist. Cat-6<sub>A</sub> wurde vom europäischen Normierungsgremium ISO/IEC (International Organization for Standardization/International Electrotechnical Commission) und Cat-6A vom US-amerikanischen EIA/TIA (Electronic Industries Alliance/Telecommunications Industry Association) festgelegt.
''Categorie 6 augmented'' (Cat-6<sub>A</sub> bzw. Cat-6A) ist ein Standard, der aus dem erhöhten Bandbreitenbedarf von 10-Gigabit-Ethernet (10GBASE-T) resultiert, für Übertragungsfrequenzen bis 500&nbsp;MHz und Strecken bis 100 m ausgelegt sowie abwärtskompatibel zu bestehenden Netzwerk-Protokollen ist. Cat-6<sub>A</sub> wurde vom internationalen Normierungsgremium '''[[International Organization for Standardization|ISO]]/[[International Electrotechnical Commission|IEC]]''' (International Organization for Standardization/International Electrotechnical Commission) und Cat-6A vom US-amerikanischen '''[[EIA]]'''/'''[[TIA]]''' (Electronic Industries Alliance/Telecommunications Industry Association) festgelegt.
Die Cat-6 augmented fordert höhere technische Bedingungen für die Unterbindung von Nebensignaleffekten und Rauschen.<ref>{{internetquelle |hrsg=sdbj |url=http://www.sdbj.ch/index.php?view=article&catid=47%3Arj45-kabelcrimpen-und-infos&id=61%3Atwisted-pair-kabel&format=pdf |titel=Twisted-Pair-Kabel |seiten=9 |zugriff=19. August 2009}}</ref>. Die Bezeichnung Kategorie 6<sub>A</sub> oder Cat.6<sub>A</sub> gemäß der europäischen ISO/IEC Norm bezeichnet immer eine Komponente und nicht die ganze Übertragungsstrecke (Channel), während Cat. 6A sowohl Komponente als auch Channel bezeichnen kann.
Die Cat-6 augmented fordert höhere technische Bedingungen für die Unterbindung von Nebensignaleffekten und Rauschen.<ref>{{internetquelle |hrsg=sdbj |url=http://www.sdbj.ch/index.php?view=article&catid=47%3Arj45-kabelcrimpen-und-infos&id=61%3Atwisted-pair-kabel&format=pdf |titel=Twisted-Pair-Kabel |seiten=9 |zugriff=19. August 2009}}</ref>. Die Bezeichnung Kategorie 6<sub>A</sub> oder Cat.6<sub>A</sub> gemäß der internationalen Norm ISO/IEC 11801 bezeichnet immer eine Komponente und nicht die ganze Übertragungsstrecke (Channel), während Cat. 6A sowohl Komponente als auch Channel bezeichnen kann.


Was die Anforderungen an die Übertragungsstrecke (Channel) für 10-Gigabit-Ethernet betrifft, gibt es in Europa zwei gültige Normen: einerseits den Standard [[IEEE 802.3an]] der IEEE (Institute of Electrical and Electronics Engineers), und andererseits die Class E<sub>A</sub> der ISO/IEC, welche die höheren Anforderungen stellt. In der amerikanischen Norm EIA/TIA 568 ist der Standard für die Komponente nach Cat-6A sowie der Übertragungsstrecke nach Cat-6A bereits seit Anfang 2008 verabschiedet, weist jedoch gegenüber der weltweiten ISO/IEC 11801 geringere Anforderungen an das Leistungsvermögen auf. Will man die höchste Leistungsreserve für Channel und Komponenten sicherstellen, sind die ISO/IEC Normen anzuwenden (Class E<sub>A</sub> für Channel, Cat.6<sub>A</sub> für Komponenten).
Was die Anforderungen an die Übertragungsstrecke (Channel) für 10-Gigabit-Ethernet betrifft, gibt es in Europa zwei gültige Normen: einerseits den Standard [[IEEE 802.3an]] der IEEE (Institute of Electrical and Electronics Engineers), und andererseits die Class E<sub>A</sub> der ISO/IEC. Der Standard des IEEE reicht aber nicht aus, um die nötigen Anforderungen an die Verkabelungs-Infrastruktur vollständig zu beschreiben, da er weniger Kriterien definiert als die Norm des ISO/IEC. Daher kann für einen Vergleich zwischen den beiden Varianten von ''Categorie 6 augmented'' nur die Norm des ISO/IEC als Gegenstück zu jener der EIA/TIA herangezogen werden.
In der amerikanischen Norm EIA/TIA 568 ist der Standard für die Komponente nach Cat-6A sowie der Übertragungsstrecke nach Cat-6A bereits seit Anfang 2008 verabschiedet, weist jedoch gegenüber der weltweiten ISO/IEC 11801 geringere Anforderungen an das Leistungsvermögen auf. Will man die höchste Leistungsreserve für Channel und Komponenten sicherstellen, sind die ISO/IEC Normen anzuwenden (Class E<sub>A</sub> für Channel, Cat.6<sub>A</sub> für Komponenten).


Die Anforderungen an die Komponente nach ISO/IEC–Kategorie 6<sub>A</sub> liegt (Stand März 2009) derzeit als Final-Draft innerhalb der Arbeitsgruppe der ISO/IEC 11801 im Anhang 2 (Amendment 2) vor. Mit der Veröffentlichung wird für Anfang 2010 gerechnet. Zur Abgrenzung vom leistungsschwächeren EIA/TIA-568B-Standard wird in der ISO/IEC die Übertragungsstrecke statt Cat-6A Klasse E<sub>A</sub> genannt und die Komponente durch ein tiefgestelltes A gekennzeichnet – also Komponente nach Kategorie 6<sub>A</sub>.
Die Anforderungen an die Komponente nach ISO/IEC–Kategorie 6<sub>A</sub> liegt (Stand März 2009) derzeit als Final-Draft innerhalb der Arbeitsgruppe der ISO/IEC 11801 im Anhang 2 (Amendment 2) vor. Mit der Veröffentlichung wird für Anfang 2010 gerechnet. Zur Abgrenzung vom leistungsschwächeren EIA/TIA-568B-Standard wird in der ISO/IEC die Übertragungsstrecke statt Cat-6A Klasse E<sub>A</sub> genannt und die Komponente durch ein tiefgestelltes A gekennzeichnet – also Komponente nach Kategorie 6<sub>A</sub>.
Zeile 170: Zeile 173:
''Cat-7-Kabel'' haben vier einzeln abgeschirmte [[Doppelader|Adernpaare]] (Screened/Foiled shielded Twisted Pair S/FTP) innerhalb eines gemeinsamen Schirms. Ein Cat-7-Kabel erfüllt die Anforderungen der Norm ''[[IEEE 802.3an]]'' und ist damit für 10-Gigabit-Ethernet geeignet.
''Cat-7-Kabel'' haben vier einzeln abgeschirmte [[Doppelader|Adernpaare]] (Screened/Foiled shielded Twisted Pair S/FTP) innerhalb eines gemeinsamen Schirms. Ein Cat-7-Kabel erfüllt die Anforderungen der Norm ''[[IEEE 802.3an]]'' und ist damit für 10-Gigabit-Ethernet geeignet.
[[Datei:Tera_steckverbinder.JPG|thumb|Beispiel Cat-7 Stecker]]
[[Datei:Tera_steckverbinder.JPG|thumb|Beispiel Cat-7 Stecker]]
Da der aus vorigen Kategorien bekannte Stecker RJ-45 diese Spezifikationen aufgrund der engen Kontaktanordnung nicht erfüllen kann, sind alle RJ-45-CAT-7-Patchkabel ein Etikettenschwindel (wie auch RJ-45-CAT-7-Netzwerkdosen und -Panels). Um Netzwerkkomponenten gemäß CAT-7 herzustellen, wurden eigens neue Steckverbindungen konzipiert, die im wesentlichen den Abstand zwischen den Adernpaaren vergrößern.
Der RJ-45-Stecker (siehe vorige Kategorien) kann diese Spezifikationen aufgrund der engen Kontaktanordnung nicht erfüllen; alle RJ-45-CAT-7-Patchkabel sind ein Etikettenschwindel (wie auch RJ-45-CAT-7-Netzwerkdosen und -Panels). Um Netzwerkkomponenten gemäß CAT-7 herzustellen, wurden eigens neue Steckverbindungen konzipiert, die im wesentlichen den Abstand zwischen den Adernpaaren vergrößern.


Während der Normierungsphase zur ISO/IEC11802:2002 und EN50173 wurden verschiedene Steckertypen zur Wahl gestellt.
Während der Normierungsphase zur ISO/IEC11802:2002 und EN50173 wurden verschiedene Steckertypen zur Wahl gestellt.

Version vom 10. September 2010, 11:03 Uhr

Ethernet-Twisted-Pair-Kabel mit RJ-45-Steckern

Als Twisted-Pair-Kabel oder Kabel mit verdrillten Adernpaaren bezeichnet man in der Telekommunikations-, Nachrichtenübertragungs- und Computertechnik Kabeltypen, bei denen die beiden Adern eines Adernpaares miteinander verdrillt sind und unterschiedliche Adernpaare mit verschieden starker Verdrillung, der sogenannten Schlaglänge, in einem Kabel verseilt sind. Verdrillte Adernpaare bieten Schutz gegen den störenden Einfluss von äußeren magnetischen Wechselfeldern und elektrostatische Beeinflussungen auf die übertragenen Signale, da sich durch das Verdrillen der Adernpaare Beeinflussungen durch äußere Felder größtenteils gegenseitig aufheben. Unterschiedliche Schlaglängen der Adernpaare reduzieren dabei ein Übersprechen zwischen benachbarten Aderpaaren im Kabel. Ein elektrisch leitender Schirm (oft aus Aluminiumfolie und/oder Kupfergeflecht) bietet zusätzlich Schutz gegen störende äußere elektromagnetische Felder. Twisted-Pair-Kabel ohne Schirm werden oft als Unshielded Twisted Pair (UTP) bezeichnet, solche mit Schirm hingegen zusammenfassend als Shielded Twisted Pair (STP).

Verdrillte Adernpaare werden mit symmetrischen Signalen beaufschlagt, um am fernen Ende einer (längeren) Kabelstrecke die Differenz zwischen den Signalen der beiden Adern – mittels Transformator oder Differenzverstärker – bilden zu können und um damit das sendeseitige Signal bestmöglich am Empfangsort rekonstruieren zu können (Gleichtaktunterdrückung/CMR).

Kabel mit verdrillten Adernpaaren werden schon sehr lange zur Signal- und Datenübertragung eingesetzt, in der Computertechnik anfangs für die parallele Schnittstelle des Druckers, die sogenannte Centronics-Schnittstelle. Heute werden entsprechende Kabel für alle Arten der Signalübertragung eingesetzt, u.a. in der Netztechnik z.B. als Ethernet-Kabel oder für die strukturierte Verkabelung oder in der Feldbustechnik.

Leitungsaufbau

Verdrillte Adernpaare mit Farbcodes nach EIA/TIA 568A

Twisted-Pair-Kabel enthalten Adernpaare aus je zwei miteinander verdrillten (englisch twisted) Paaren (englisch pair) von Einzeladern.

Details:

  • Ader: ist ein kunststoffisolierter Kupferleiter, bei Installations-/Verlegekabeln als starre Ader (Draht) mit einem üblichen Durchmesser von 0,4 mm oder 0,6 mm. Die Standardbezeichnung eines typischen Twisted-pair-Kabels ist dementsprechend 4x2x0,4 oder 4x2x0,6:
    • 4 → Anzahl der Adernpaare;
    • 2 → Adern verlaufen in einem Paar;
    • 0,6 → der Durchmesser einer Ader in mm
Bei flexiblen Patchkabeln als Litze mit einem üblichen Durchmesser von 0,40 bis 0,50 mm. Häufig wird die Stärke des Kupferleiters auch in AWG (American Wire Gauge) angegeben; die üblichen Größen reichen dann von AWG27 bis AWG22 (je kleiner die AWG-Zahl, desto dicker der Leiter).
  • Paar: Je zwei Adern sind zu einem Paar verdrillt, mehrere Adernpaare im Kabel miteinander verseilt.
  • Leiterbündel oder Seele: bezeichnet die im Kabel miteinander verseilten (oft vier) Paare. Bei mehr als einem Adernpaar werden die Schlaglängen unterschiedlich gewählt, um ein Neben-/Übersprechen zu verringern.
  • Kabelmantel: umgibt die Seele. Besteht meist aus Kunststoffgeflecht und glatter Hülle darüber. Verwendetes Material ist oft PVC oder halogenfreies Material wie PE oder Aramid.
  • Schirm: metallische Umhüllung von einzelnen Adernpaaren und/oder der Seele. Der Schirm besteht aus Metallfolie, metallisierter Kunststofffolie, Drahtgeflecht oder Kombinationen daraus.

Zusätzlich zu den Adernpaaren können weitere Elemente im Kabel vorhanden sein, wie z.B.:

  • Beidraht: als elektrische Masseleitung.
  • Fülladern: aus Kunststoff zum Ausfüllen von Hohlräumen zwischen den Paaren.
  • Trennelemente: aus Kunststoff, um die Paare auseinander zu halten.
  • Kunststofffaden: (zum Beispiel aus Nylon) zwischen Gesamtschirm und Kabelmantel, mit dem auf einfache Weise der Kabelmantel entfernt werden kann. Dazu den Faden mit einer Zange festhalten und im spitzen Winkel zurückziehen. Der Faden schneidet dabei die Umhüllung auf, diese kann nun einfach entfernt werden.

Schirmung

Bei Verwendung ungeschirmter Kabel oder Steckverbinder besteht wegen der eingesetzten Trenntransformatoren im Signalweg zwischen den Netzgeräten keine Masseverbindung. Der Schirm begünstigt die elektromagnetische Verträglichkeit (EMV) und Abhörsicherheit; Wechselwirkungen mit anderen Geräten werden vermindert.

Bei differenzieller bzw. symmetrischer Signalübertragung ist eine Masseverbindung über einen Schirm nicht erforderlich, sofern keine Gleichtaktstörungen unterdrückt werden müssen. Ein zusätzlicher Schirm stört den Schutzmechanismus des Verdrillens nicht, er bietet zusätzlich einen Schutz gegenüber Gleichtaktstörungen.

Die Schirmung dient dazu, die Immunität zu verbessern und die Störaussendung zu unterdrücken. Bei einer Verkabelungsstrecke wird der Schirm auf beiden Seiten an den jeweiligen Komponenten aufgelegt. Die entstehenden Ausgleichsströme wirken nach dem Prinzip der lenzschen Regel dem magnetischen Feldanteil einer elektromagnetischen Welle entgegen. Ideal sind 360°-Kontaktierungen. Die Schirmwirkung einer Leitung wird als Transferimpedanz gemessen.

Ausführungen

Twisted-Pair-Kabel gibt es unter anderem in zwei- und vierpaariger Ausführung. Bei aktuellen Netzinstallationen werden vorzugsweise vierpaarige Kabel verwendet.

Nomenklatur

Da die alten Bezeichnungen nicht einheitlich und damit oft verwirrend oder sogar widersprüchlich sind, wurde mit der Norm ISO/IEC-11801 (2002)E[1] ein neues Bezeichnungs-Schema der Form XX/YZZ eingeführt.

Dabei steht:

  • XX für die Gesamtschirmung:
    • U = ungeschirmt
    • F = Folienschirm
    • S = Geflechtschirm
    • SF = Geflecht- und Folienschirm
  • Y steht für die Aderpaarschirmung:
    • U = ungeschirmt
    • F = Folienschirm
    • S = Geflechtschirm
  • ZZ steht für
    • TP = Twisted Pair
    • QP = Quad Pair
Grundsätzlicher Aufbau eines UTP-Kabels

UTP

Neue Bezeichnung nach ISO/IEC 11801 (2002)E: U/UTP

Kabel mit ungeschirmten Paaren und ohne Gesamtschirm (Unshielded Twisted Pair). Im deutschsprachigen Raum werden UTP-Kabel kaum eingesetzt, weltweit sind es jedoch die meistverwendeten Kabel für Ethernet-LANs (> 90%). Für Übertragungsverfahren bis Gigabit-Ethernet reicht ein UTP-Kabel der Kategorie 5e aus. Erst für zukünftige Techniken werden geschirmte Kabel benötigt (10-Gigabit-Ethernet), aber auch hier wird es einen Standard geben, der mit UTP-Kabeln funktioniert – allerdings mit der Einschränkung, dass nur geringere Reichweiten möglich sein werden. Im Gespräch sind bis zu 50 m auf UTP-Kabeln gegenüber 90 m auf STP-Kabeln.

Bis zur Kategorie 6 ist ein UTP-Kabel wegen seines geringen Außendurchmessers und der fehlenden Schirme einfach zu verarbeiten und in der Regel preisgünstiger als STP-Kabeltypen. Dem entgegen steht jedoch, dass gegenüber stromführenden Komponenten und Kabeln deutlich höhere Abstände eingehalten werden müssen, als das bei geschirmten Kabeln notwendig wäre.

Ab Kategorie 6A (10-Gigabit-Ethernet) werden in UTP-Kabeln künstlich Asymmetrien aufgebaut, um Alien-Next-Problematiken bei parallel geführten Leitern entgegenzuwirken. Bedingt durch diesen Umstand ist der Außendurchmesser gestiegen und in der Regel sogar größer als bei SF/FTP-Kabeln der Kategorie 7 und höher.


Grundsätzlicher Aufbau eines U/FTP-, U/STP-Kabels

STP

Kabel mit Schirmung (Shielded Twisted Pair) in unterschiedlichen Varianten:

FTP

Neue Bezeichnung nach ISO/IEC-11801 (2002)E: U/FTP

Die Adernpaare sind mit einem metallischen Schirm (meist eine aluminiumkaschierte Kunststofffolie) umgeben (Foiled Twisted Pair). Bei Schirmung jeweils eines Paares spricht man auch von PiMF (Paar in Metallfolie), umfasst der Schirm zwei Paare, so wird das auch als ViMF (Vierer in Metallfolie) bezeichnet. Die aktuelle Version der EN50173–1 bezeichnet diese Kabel mit FTP. Bis zur Kategorie 6 galt typischerweise, dass durch diese zusätzliche Schirmung das FTP-Kabel einen geringfügig größeren Außendurchmesser als UTP-Kabel hatte und etwas größere Biegeradien aufwies. (Siehe Hinweise ab Kategorie 6A bei UTP-Kabeln). Jedoch sind FTP-Kabel hinsichtlich Abstand gegenüber stromführenden Leitern, Alien Next-Effekten und gegenüber Querdruck in der Regel unempfindlicher und effizienter als UTP-Kabel. Das Übersprechen zwischen den einzelnen Adernpaaren kann durch die Schirmung ebenfalls verringert werden (siehe auch Elektromagnetische Verträglichkeit).

Grundsätzlicher Aufbau eines S/FTP- bzw. F/FTP-Kabels
S/FTP-Kabel

S/FTP, F/FTP oder SF/FTP

Neue Bezeichnung nach ISO/IEC-11801 (2002)E: S/FTP (Geflecht), F/FTP (Folie), SF/FTP (Geflecht+Folie)

Aufbau wie bei FTP, jedoch mit zusätzlicher metallischer Gesamtschirmung um die Leiterbündel (Screened Foiled Twisted Pair). Der Gesamtschirm kann als Folie oder als Drahtgeflecht oder aus beidem zusammen ausgeführt sein. Gemäß aktueller EN50173 werden diese Kabel mit einem F für einen Folienschirm bezeichnet, ein S steht für einen Kupfergeflechtschirm, ein SF steht für einen Gesamtschirm aus Folie und Geflecht. Der Bedeckungsgrad des Geflechts sollte über 30% liegen, um gegenüber niederfrequenten Feldern eine hinreichende Abschirmung zu erzielen.

Grundsätzlicher Aufbau eines S/UTP-Kabels
F/UTP-Kabel

S/UTP, F/UTP oder SF/UTP

Neue Bezeichnung nach ISO/IEC-11801 (2002)E: S/UTP (Geflecht), F/UTP (Folie), SF/UTP (Geflecht+Folie)

Aufbau wie bei UTP, jedoch mit zusätzlicher metallischen Schirmung um die Leiterbündel (Screened Unshielded Twisted Pair). Der Gesamtschirm kann als Folie oder als Drahtgeflecht oder aus beidem zusammen ausgeführt sein. Gemäß aktueller EN50173 werden diese Kabel mit einem F für einen Folienschirm bezeichnet, ein S steht für einen Kupfergeflechtschirm, ein SF steht für einen Gesamtschirm aus Folie und Geflecht.

ITP

Eine industrielle Kabelvariante (Industrial Twisted Pair) mit S/STP-Kabelaufbau. Während typische Netzwerkadern vier Aderpaare aufweisen, beschränkt sich ITP auf lediglich zwei Aderpaare.

WARP-Technologie

Eine neue Technologie für 10-Gigabit-Ethernet, mit der ebenfalls Leitungslängen von 100 m erreicht wurden, hat das Schweizer Unternehmen R&M (Reichle & De-Massari) auf den Markt gebracht. Sie kombiniert die Vorteile aus geschirmter und ungeschirmter Technik. Bei dieser sogenannten „WARP-Technologie“ – das Kürzel steht für „Wave Reduction Patterns“ – sind Kabel und Module mit etwa 1 bis 2 cm langen Metallfoliensegmenten und Metallplatten geschirmt. Anders als bei bisherigen Schirmungen sind die Foliensegmente aber nicht kontaktiert und liegen nicht auf Erdpotential. Sie sind durch kleine Zwischenräume voneinander getrennt und hängen elektrisch sozusagen „in der Luft“. Eine Eigenschaft dieser „schwebenden Schirmung“ ist, dass sie praktisch keine Kapazitäten zur Erde aufbaut. Somit beeinträchtigt sie die Bandbreite der Übertragung nicht, bietet aber trotzdem einen maßgeblichen Schutz gegen Nahübersprechen etc.

Die Kombination von solch „unterbrochener“ Schirmung und symmetrischer Signalübertragung führt dazu, dass Störungen, die sich auf beide Adern gemeinsam auswirken (Gleichtakt-Störungen), durch die Symmetrie der Signale eliminiert werden; es wird ausschließlich die Differenz zwischen den beiden Adern eines „Twisted Pairs“ (eines verdrillten Adernpaares) ausgewertet. Und alle jene Störungen, die sich nur auf eine der beiden Adern auswirken könnten, werden durch das Verdrillen der Adern im Kabel und zum Großteil von dieser speziellen Schirmung abgefangen.

Kategorien

Um die Leistungsfähigkeit/-vermögen einer einzelnen Komponente zu beschreiben, werden die einzelnen Bestandteile eines Links (Channels), die typischerweise aus Anschlusskomponenten, Kabel und Patchkabeln besteht, in Kategorien eingeteilt. In einem Link bestimmt die Komponente mit dem geringsten Leistungsvermögen (Kategorie) die Übertragungsklasse (Link Class) des gesamten Systems. Höhere Kategorien decken automatisch die darunterliegenden Kategorien mit ab. Die Zusammenschaltung von z.B. einem Cat-5-Kabel mit Cat-6-Anschlusskomponenten reduziert die Link-Klasse von theoretisch Klasse E auf Klasse D.

Für eine leichtere Klassifizierung der einzelnen Kabel wurden Kategorien definiert, die jeweils einem spezifischen Anforderungsprofil entsprechen. Die Kategorien 1 und 2 sind nur informell definiert; die Kategorien 3 und 4 sind kommerziell nicht mehr relevant (aber in Altinstallationen noch anzutreffen). Im Folgenden finden sich die sieben definierten Kategorien:

Kategorie 1

Cat-1-Kabel sind auf maximale Betriebsfrequenzen bis 100 kHz ausgelegt und damit für die Datenübertragung ungeeignet. Sie werden zur Sprachübertragung, zum Beispiel bei Telefonanwendungen, verwendet. Nur als UTP-Kabel erhältlich.

Kategorie 2

Cat-2-Kabel sind für maximale Frequenzen bis 1 oder 1,5 MHz geeignet; sie werden zum Beispiel für eine Hausverkabelung beim ISDN-Primärmultiplexanschluss verwendet.

Kategorie 3

Cat-3-Kabel sind nicht abgeschirmte Twisted-Pair-Kabel, die auf maximale Betriebsfrequenzen von 16 MHz ausgelegt sind und für Übertragungskapazitäten von bis zu 16 Mbit/s verwendet werden. Es ist ein häufig in den USA verlegter Typ. In Amerika war Cat-3 für lange Zeit der Standardkabeltyp bei allen Telefon-Verkabelungen. Cat-3-Kabel haben drei Umdrehungen pro Zoll für jedes verdrehte Paar von Kupferleitern. Eine andere Eigenschaft ist, dass die Leitungen mit Kunststoff (Perfluor, FEP) isoliert werden, so dass eine geringe Streuung auftritt. Das ist auch wichtig bei der Verlegung des Kabels, so sollte bei der Verlegung von Telefonkabeln Cat-3 immer gegenüber Cat-5 bevorzugt werden.

Die Kabel sind ISDN-tauglich. 10-MBit-Ethernet (10BASE-T) kann problemlos auf Cat-3-Kabeln betrieben werden, zusätzlich wurde der 100BASE-T4-Standard entwickelt. Er ermöglicht 100 Mbit/s auf bestehenden Kategorie-3-Installationen, wobei alle vier Adernpaare verwendet werden – 100BASE-T4 hat außerhalb von Amerika praktisch keine Verbreitung.

Cat-3-Kabel werden heute kaum noch im Verkauf angeboten.

Kategorie 4

Über Cat-4-Kabel können 20 Mbit/s übertragen werden. Sie sind ein häufig in den USA verlegter Typ. Im Vergleich zu Cat-3 bot es nur einen kleinen Fortschritt in der Geschwindigkeit und wurde im allgemeinen zugunsten von Cat-5 ignoriert.

Kategorie 5/5e

20-Meter-Netzwerkkabel der Kategorie 5

Cat-5-Kabel sind die heute überwiegend anzutreffende installierte Basis; sie werden für Signalübertragung mit hohen Datenübertragungsraten benutzt. Die spezifische Standardkennzeichnung ist EIA/TIA-568. Cat-5-Kabel sind für Betriebsfrequenzen bis 100 MHz bestimmt. Wegen der hohen Signalfrequenzen muss bei der Verlegung und Montage, insbesondere bei den Anschlussstellen der Adern, besonders sorgfältig gearbeitet werden.

Cat-5-Kabel werden häufig für die strukturierte Verkabelung von Rechnernetzen verwendet, z. B. für Fast- oder Gigabit-Ethernet. Das hat die Verbreitung von 1000BASE-T (Gigabit-Ethernet) gefördert, da hier lediglich ein Cat-5-Kabel benötigt wird.

Die Einführung von 1000BASE-T (Gigabit Ethernet) und die damit verbundene Signalübertragung über alle acht Adern statt wie bisher bei 10BASE-T und 100BASE-T nur über vier Adern machte es erforderlich, dass zusätzliche Werte wie PowerSum etc. berücksichtigt werden mussten. Komponenten, die die neuen Anforderungen erfüllten und damit Gigabit-Ethernet-tauglich waren, wurden bis zur Überarbeitung der Normen ISO11801 und EN50173 als Cat-5e gekennzeichnet. Cat-5e-Kabel sind abwärtskompatibel zu herkömmlichen Cat-5-Kabeln. Mit der Neufassung der Normen 2002/2003 verschwand Cat-5e als Bezeichnung und wird seitdem wieder nur Cat-5 genannt. Installationen mit Kabeln, die vor 2002 durchgeführt wurden und der damaligen Cat-5 entsprachen, müssen dementsprechend nicht unbedingt Gigabit-Ethernet-tauglich sein und sollten vor Nutzung durch ein Fachunternehmen dahingehend geprüft werden.

Die Bezeichnungen EIA/TIA-568A und EIA/TIA-568B werden aber auch informell verwendet, um die beiden in diesem Standard festgelegten Zuordnungen der farblich gekennzeichneten Adernpaare zu den Anschlusskontakten des RJ-45-Steckers zu bezeichnen; das sagt in diesem Fall jedoch nichts über die Übertragungsqualität aus.

Die Prüfwerte für Kabel und Stecker Cat-5e EIA/TIA-568A-5 entsprechen den neueren Werten nach Class D aus ISO/IEC 11801:2002 oder EN 50173-1:2002.

Kategorie 6/6a/6e

Das Cat-6-Kabel wird durch die EN50288 definiert. Cat-6-Kabel sind für Betriebsfrequenzen bis 250 MHz bestimmt. Bei größeren Längen leidet die Übertragungsgeschwindigkeit, geringe Überlängen sind aber je nach Außeneinflüssen unbedenklich. Sicherheit gibt letztlich die Überprüfung mit einem entsprechenden Testgerät, das die Einhaltung der Grenzwerte der aktuellen EN50173-1, IS 11801, beziehungsweise der EIA/TIA 568B2.1 verifiziert.

Anwendungsfelder für Cat-6 sind Sprach- und Datenübertragung sowie Multimedia und ATM-Netze. Leistungsfähiger sind Kabel nach Cat-6e (500 MHz) nach EIA/TIA 568B2.1 Anhang 10d. In der Normierungsphase von 10GBASE-T war eine neue Cat-6-Spezifikation mit einer Bandbreite von 625 MHz geplant, da es einen Übertragungsmodus von 10GBASE-T (IEEE 802.3an, verabschiedet 2006) gibt, der das unterstützt. Dieser wird aber derzeit nicht weiter verfolgt, da er gegenüber Cat-6a neue Steckertypen erforderlich gemacht hätte. In einigen Publikationen und Verkaufskatalogen findet sich ein Begriff Cat-6 enhanced oder Cat-6e, dabei handelt es sich nicht um eine Norm. Häufig soll damit einem Produkt eine Tauglichkeit für 10GBASE-T über mindestens 55 m zugesichert werden.

Kategorie 6A/6A

Cat 6A-Modul

Categorie 6 augmented (Cat-6A bzw. Cat-6A) ist ein Standard, der aus dem erhöhten Bandbreitenbedarf von 10-Gigabit-Ethernet (10GBASE-T) resultiert, für Übertragungsfrequenzen bis 500 MHz und Strecken bis 100 m ausgelegt sowie abwärtskompatibel zu bestehenden Netzwerk-Protokollen ist. Cat-6A wurde vom internationalen Normierungsgremium ISO/IEC (International Organization for Standardization/International Electrotechnical Commission) und Cat-6A vom US-amerikanischen EIA/TIA (Electronic Industries Alliance/Telecommunications Industry Association) festgelegt. Die Cat-6 augmented fordert höhere technische Bedingungen für die Unterbindung von Nebensignaleffekten und Rauschen.[2]. Die Bezeichnung Kategorie 6A oder Cat.6A gemäß der internationalen Norm ISO/IEC 11801 bezeichnet immer eine Komponente und nicht die ganze Übertragungsstrecke (Channel), während Cat. 6A sowohl Komponente als auch Channel bezeichnen kann.

Was die Anforderungen an die Übertragungsstrecke (Channel) für 10-Gigabit-Ethernet betrifft, gibt es in Europa zwei gültige Normen: einerseits den Standard IEEE 802.3an der IEEE (Institute of Electrical and Electronics Engineers), und andererseits die Class EA der ISO/IEC. Der Standard des IEEE reicht aber nicht aus, um die nötigen Anforderungen an die Verkabelungs-Infrastruktur vollständig zu beschreiben, da er weniger Kriterien definiert als die Norm des ISO/IEC. Daher kann für einen Vergleich zwischen den beiden Varianten von Categorie 6 augmented nur die Norm des ISO/IEC als Gegenstück zu jener der EIA/TIA herangezogen werden.

In der amerikanischen Norm EIA/TIA 568 ist der Standard für die Komponente nach Cat-6A sowie der Übertragungsstrecke nach Cat-6A bereits seit Anfang 2008 verabschiedet, weist jedoch gegenüber der weltweiten ISO/IEC 11801 geringere Anforderungen an das Leistungsvermögen auf. Will man die höchste Leistungsreserve für Channel und Komponenten sicherstellen, sind die ISO/IEC Normen anzuwenden (Class EA für Channel, Cat.6A für Komponenten).

Die Anforderungen an die Komponente nach ISO/IEC–Kategorie 6A liegt (Stand März 2009) derzeit als Final-Draft innerhalb der Arbeitsgruppe der ISO/IEC 11801 im Anhang 2 (Amendment 2) vor. Mit der Veröffentlichung wird für Anfang 2010 gerechnet. Zur Abgrenzung vom leistungsschwächeren EIA/TIA-568B-Standard wird in der ISO/IEC die Übertragungsstrecke statt Cat-6A Klasse EA genannt und die Komponente durch ein tiefgestelltes A gekennzeichnet – also Komponente nach Kategorie 6A.

Da die Bezeichnung Cat6a nicht geschützt ist, kann sie ohne weiteres auch innerhalb von Produktbezeichnungen verwendet werden. Gleiches galt schon für Cat-6e oder Cat-7e. Wenn das „a“ klein geschrieben ist, deutet dies auf keine offizielle Norm hin. Das groß geschriebene, gleichzeilige „A“ meint die US-amerikanische Norm mit den geringeren Anforderungen, das groß geschriebene, tiefgestellte „A“ die strengere europäische Norm. Ob es sich tatsächlich um eine Komponente der Kategorie 6 augmented handelt, kann zum Beispiel ein unabhängiges Prüfinstitut mit der Messmethode direct probing bzw. re-embedded nach den Grenzwerten der jeweiligen Standards, wie EIA/TIA oder ISO11801:2002-Amd2 (Draft s. o.) sicherstellen. Ein entsprechendes Prüfzertifikat gibt dem Anwender die Sicherheit, dass er tatsächlich eine Komponente der Kategorie 6 augmented erhält. Bemerkbar macht sich die geringere Leistungsfähigkeit weniger bei langen Strecken, wie sie oftmals in Link-Zertifikaten verwendet werden, sondern vielmehr bei kurzen Strecken < 15 m, da die kompensierende Wirkung des Kabels hier nicht wirklich zum tragen kommt. Bei Link-Längen größer als 15 m kann das auch der Fall sein, wenn z. B. statt eines Kategorie-7-Kabels nur ein Kabel der Kategorie 6a verwendet wird.

Mit einer Übertragungsstrecke der Klasse EA, basierend auf durchgängig nach ISO/IEC geprüften Kategorie 6A-Komponenten erreicht man eine einheitliche, durchgängige Leistungsfähigkeit der gesamten Verkabelungsstrecke und besseren Schutz für die Signalübertragung bis 500 MHz, die bei 10-Gigabit-Ethernet zum Einsatz kommt. Der ISO/IEC-Standard (Komponenten: Cat.6A, Channel: Class EA) bietet dem Anwender somit mehr Reserven und höhere Betriebssicherheit.

Kategorie 7/7A

Globaler Standard außer in den USA. Kategorie 7 (Klasse F) ermöglicht Betriebsfrequenzen bis 600 MHz, Kategorie 7A (Klasse FA) bis 1000 MHz.

Cat-7-Kabel haben vier einzeln abgeschirmte Adernpaare (Screened/Foiled shielded Twisted Pair S/FTP) innerhalb eines gemeinsamen Schirms. Ein Cat-7-Kabel erfüllt die Anforderungen der Norm IEEE 802.3an und ist damit für 10-Gigabit-Ethernet geeignet.

Beispiel Cat-7 Stecker

Der RJ-45-Stecker (siehe vorige Kategorien) kann diese Spezifikationen aufgrund der engen Kontaktanordnung nicht erfüllen; alle RJ-45-CAT-7-Patchkabel sind ein Etikettenschwindel (wie auch RJ-45-CAT-7-Netzwerkdosen und -Panels). Um Netzwerkkomponenten gemäß CAT-7 herzustellen, wurden eigens neue Steckverbindungen konzipiert, die im wesentlichen den Abstand zwischen den Adernpaaren vergrößern.

Während der Normierungsphase zur ISO/IEC11802:2002 und EN50173 wurden verschiedene Steckertypen zur Wahl gestellt. Die Entscheidung fiel auf 2 unterschiedliche Stecker-/Buchsentypen, die heute als einzige zugelassene Kategorie 7/7A-Anschlusskomponenten definiert sind.

  • Nexans GG45 (laut Norm aufgrund seiner Abwärtskompatibilität zu RJ45 bei Officeverkabelungen zu bevorzugen)
  • Siemon TERA (laut Norm für multimediale Applikationen zu bevorzugen)

Auf dem Markt führen diese Steckverbindungen jedoch noch ein Nischendasein, da derzeit alle gängigen Endgeräte RJ-45-basierend sind, so dass ein solcher Umstieg an jedem Endgerät einen entsprechenden Adapter erfordern würde – außer bei GG-45, der neben dem GG-45-Stecker auch „normale“ RJ-45-Stecker und damit Patchkabel aufnimmt. Heute wird oftmals für qualitativ hochwertige Netzwerkverkabelungen eine CAT-7-Leitung in Verbindung mit CAT6-Netzwerkdosen/-Patchpanels genutzt, was die gesamte Netzwerkstrecke ungeachtet der „guten“ CAT-7-Leitung auf Klasse E oder EA Niveau (CAT-6) degradiert.

Derzeit evaluiert die IEEE mit dem Standard 802.3ba die nächste Generation des Ethernets, 40- und 100-Gigabit-Ethernet. Die Wahrscheinlichkeit, dass diese Geschwindigkeiten noch mit Kupferverkabelungen auf RJ45-Basis oder Cat7-Anschlusstechnik mit Reichweiten bis zu 100 m erreicht werden können, ist äußerst gering. Eine Entwicklung in diese Richtung wird derzeit auch nicht vorangetrieben.

Zertifizierung

Damit ein Kabel gemäß einer der vorgenannten Kategorien zertifiziert werden kann, muss es bestimmte Anforderungen erfüllen. Beispielsweise müssen für ein Cat-5-Zertifikat die folgenden Punkte vollständig erfüllt sein:

Wiremap Kontrolle der korrekten Verdrahtung
Leitungswellenwiderstand Leitungswellenwiderstand des Kabels
Dämpfung Verringerung der Amplitude
Länge Länge der Übertragungsstrecke
DC-Widerstand Ohmscher Widerstand
NEXT (near end crosstalk) Nahübersprechen
FEXT (far end crosstalk) Fernübersprechen
ELFEXT (equal level far end crosstalk) Verhältnis des übersprechenden Ausgangspegels zum eigentlichen Ausgangspegel
ACR (Attenuation To Crosstalk Ratio) Dämpfung-Übersprech-Verhältnis
powersum NEXT Leistungssumme des Nahübersprechens
powersum ELFEXT Leistungssumme der elektromagnetische Koppelung am entfernten Kabelende
powersum ACR Leistungssumme des Dämpfung-Übersprech-Verhältnis
Return Loss Rückflussdämpfung
NVP (nominal velocity of propagation) verzögerte Signallaufzeit gegenüber der Lichtgeschwindigkeit im Vakuum
Propagation Delay Signallaufzeit
Delay Skew Signallaufzeitunterschied auf verschiedenen Aderpaaren

Siehe auch

Einzelnachweise

  1. http://www.iso.org/iso/catalogue_detail.htm?csnumber=36491, ISO/IEC 11801:2002, Information technology -- Generic cabling for customer premises
  2. Twisted-Pair-Kabel. sdbj, S. 9, abgerufen am 19. August 2009.