„Durchblutung“ – Versionsunterschied

[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
Addbot (Diskussion | Beiträge)
K Bot: 10 Interwiki-Link(s) nach Wikidata (d:q1266915) migriert
+Wikt
 
(16 dazwischenliegende Versionen von 13 Benutzern werden nicht angezeigt)
Zeile 4: Zeile 4:


== Quantifizierung ==
== Quantifizierung ==
Auch als Perfusion (im Sinne einer quantifizierbaren [[Physikalische Größe|Größe]]) bezeichnet wird das Blutvolumen <math>\Delta V</math>, das pro Zeiteinheit <math>\Delta t</math> durch ein Organ oder allgemeiner durch biologisches Gewebe der Masse <math>m</math> strömt. Abhängig von der Bezugsgröße ist die physikalische [[Maßeinheit|Einheit]] der Perfusion entweder (auf ein Organ wie etwa die Nieren bezogen):
Auch als Perfusion (im Sinne einer quantifizierbaren [[Physikalische Größe|Größe]]) bezeichnet wird das Blutvolumen <math>\Delta V</math>, das pro Zeitspanne <math>\Delta t</math> durch ein Organ oder allgemeiner durch biologisches Gewebe der Masse <math>m</math> strömt. Abhängig von der Bezugsgröße ist die physikalische [[Maßeinheit|Einheit]] der Perfusion entweder (auf ein Organ wie etwa die Nieren bezogen):
:<math> \left[\frac{\Delta V}{\Delta t}\right] = \frac{\text{ml}}{\text{min}} </math>
:<math> \left[\frac{\Delta V}{\Delta t}\right] = \frac{\text{ml}}{\text{min}} </math>
oder (auf die regionale Durchblutung bezogen, auch als spezifische Perfusion bezeichnet):
oder (auf die regionale Durchblutung bezogen, auch als spezifische Perfusion bezeichnet):
:<math> \left[\frac{\Delta V}{m \cdot \Delta t}\right] = \frac{\text{ml}}{\text{g} \cdot \text{min}} </math>.
:<math> \left[\frac{\Delta V}{m \cdot \Delta t}\right] = \frac{\text{ml}}{\text{g} \cdot \text{min}} </math>.
Die (Gesamt-)Durchblutung der Nieren beträgt beispielsweise ca. 1200&nbsp;ml/min<ref>{{Literatur |Titel=Angewandte Physiologie 2: Organsysteme verstehen |Herausgeber=Frans van den Berg |Verlag=Georg-Thieme-Verlag |Ort=Stuttgart |Jahr=2005 |Auflage=2. |ISBN=3-13-117082-4 |Seiten=126}} ({{Google Buch |BuchID=Nx6uJ0mN5xEC&pg=PA126&dq=Durchblutung}})</ref>; die spezifische Perfusion ist ungefähr 4&nbsp;ml/(g·min)<ref>{{Literatur |Titel=Physiologie des Menschen: Mit Pathophysiologie |Herausgeber=Robert F. Schmidt, Florian Lang, Gerhard Thews |Verlag=Springer |Ort=Berlin Heidelberg New York |Jahr=2005 |Auflage=29. |ISBN=3-540-21882-3 |Seiten=809}} ({{Google Buch |BuchID=AT81K5wfxZ8C&pg=PA809&dq=Durchblutung}})</ref>. Die Gesamtdurchblutung eines Organs lässt sich auch als Quotient des Druckabfalls <math>\Delta p = p_\text{a}-p_\text{v}</math> zwischen [[Mittlerer arterieller Druck|arteriellem]] (<math>p_\text{a}</math>) und venösem Druck (<math>p_\text{v}</math>) und dem [[Gefäßwiderstand]] <math>R</math> des Organs, also als <math>\Delta p / R</math> beschreiben<ref>{{Literatur |Titel=Normale und pathologische Physiologie der Nieren |Autor=Péter Bálint |Ort=Berlin |Verlag=VEB Volk und Gesundheit |Jahr=1969 |Seiten=69−70}} ({{Google Buch |BuchID=OSNsAAAAMAAJ&dq=durchblutung+widerstand+druck}})</ref>.
Die (Gesamt-)Durchblutung der Nieren eines Erwachsenen beträgt beispielsweise ca. 1200&nbsp;ml/min;<ref>{{Literatur |Hrsg=Frans van den Berg |Titel=Angewandte Physiologie 2: Organsysteme verstehen |Auflage=2. |Verlag=Georg-Thieme-Verlag |Ort=Stuttgart |Datum=2005 |ISBN=3-13-117082-4 |Seiten=126 |Online={{Google Buch |BuchID=Nx6uJ0mN5xEC |Seite=126 |Hervorhebung=Durchblutung}}}}</ref> die spezifische Perfusion ist ungefähr 4&nbsp;ml/(g·min).<ref>{{Literatur |Hrsg=Robert F. Schmidt, Florian Lang, [[Gerhard Thews]] |Titel=Physiologie des Menschen: Mit Pathophysiologie |Auflage=29. |Verlag=Springer |Ort=Berlin Heidelberg New York |Datum=2005 |ISBN=3-540-21882-3 |Seiten=809 |Online={{Google Buch |BuchID=AT81K5wfxZ8C |Seite=809 |Hervorhebung=Durchblutung}}}}</ref> Die Gesamtdurchblutung eines Organs lässt sich auch als Quotient des Druckabfalls <math>\Delta p = p_\text{a}-p_\text{v}</math> zwischen [[Mittlerer arterieller Druck|arteriellem]] (<math>p_\text{a}</math>) und venösem Druck (<math>p_\text{v}</math>) und dem [[Gefäßwiderstand]] <math>R</math> des Organs, also als <math>\Delta p / R</math> beschreiben.<ref>{{Literatur |Autor=Péter Bálint |Titel=Normale und pathologische Physiologie der Nieren |Verlag=VEB Volk und Gesundheit |Ort=Berlin |Datum=1969 |Seiten=69-70 |Online={{Google Buch |BuchID=OSNsAAAAMAAJ |Hervorhebung=durchblutung widerstand druck}}}}</ref>


Messbar ist die (spezifische) Perfusion mit verschiedenen [[Bildgebendes Verfahren (Medizin)|bildgebenden Verfahren]] wie etwa der [[Perfusions-MRT]], der Perfusions-[[Computertomographie|CT]] oder mit [[nuklearmedizin]]ischen Methoden.
Messbar ist die (spezifische) Perfusion mit verschiedenen [[Bildgebendes Verfahren (Medizin)|bildgebenden Verfahren]] wie etwa der [[Perfusions-MRT]], der Perfusions-[[Computertomographie|CT]] oder mit [[nuklearmedizin]]ischen Methoden.


== Variabilität der Durchblutung ==
== Variabilität der Durchblutung ==
Es wird eine '''Ruhedurchblutung''' von einer '''maximal möglichen Durchblutung''' (oder ''Durchblutungsreserve'') unterschieden. Dabei werden die einzelnen Organe sehr unterschiedlich stark mit Blut versorgt: In Ruhe erhalten die [[Niere]]n (im Verhältnis zu ihrem Gewicht) den relativ größten Blutanteil, bei maximaler Durchblutung sind dies die [[Muskulatur]] (Skelett- und Herzmuskulatur) und die [[Haut]]. Die bedarfsgerechte Anpassung des Blutflusses wird durch komplexe Steuerungsmechanismen gewährleistet.<ref>{{Literatur |Herausgeber=Rainer Klinke, Stefan Silbernagl |Autor= |Titel=Lehrbuch der Physiologie |Auflage=4. |Verlag=Georg Thieme |Ort=Stuttgart, New York |Jahr= |Seiten= |ISBN=3-13-796004-5 |Kommentar=S. 169ff}}</ref>
Es wird eine '''Ruhedurchblutung''' von einer '''maximal möglichen Durchblutung''' (oder ''Durchblutungsreserve'') unterschieden. Dabei werden die einzelnen Organe sehr unterschiedlich stark mit Blut versorgt: In Ruhe erhalten die [[Niere]]n (im Verhältnis zu ihrem Gewicht) den relativ größten Blutanteil, bei maximaler Durchblutung sind dies die [[Muskulatur]] (Skelett- und Herzmuskulatur) und die [[Haut]]. Die bedarfsgerechte Anpassung des Blutflusses wird durch [[Blutkreislauf des Menschen und der Säugetiere#Regulation der Durchblutungsstärke|komplexe Steuerungsmechanismen]] gewährleistet.<ref>{{Literatur |Hrsg=Rainer Klinke, Stefan Silbernagl |Titel=Lehrbuch der Physiologie |Auflage=4. |Verlag=Georg Thieme |Ort=Stuttgart, New York |Datum= |ISBN=3-13-796004-5 |Seiten=169 ff.}}</ref>


== Einflussfaktoren ==
=== Schwangerschaft ===
In der [[Schwangerschaft]] erhöht sich die Durchblutung der [[Gebärmutter]] (über die [[Arteria uterina|Aa. uterinae]]) von 50 zu Beginn auf 500–750&nbsp;ml/min am Ende der Schwangerschaft, was letztlich einem Anteil von 10–15&nbsp;Prozent am mütterlichen (''maternalen'') [[Herzminutenvolumen]] (HMV) entspricht (''uterine-'' bzw. [[maternoplazentare Durchblutung]]). Die treibende Kraft hier ist der mütterliche Blutdruck, während der fetale Blutdruck die sog. [[fetoplazentare Durchblutung]] ermöglicht. Von den gut 250–400&nbsp;ml/min des fetalen HMV fließen an die 50–60&nbsp;Prozent in die [[Nabelarterie]]n (''Aa. umbilicales'').<ref>{{Literatur |Autor=H. Steiner, K. T. M. Schneider |Titel=Dopplersonographie in Geburtshilfe und Gynäkologie: Leitfaden für die Praxis |Verlag=Springer |Ort= |Datum=2007 |ISBN=3-540-72370-6 |Seiten=10 ff. |Online={{Google Buch |BuchID=K8ugKP7Q_lQC |Seite=10}}}}</ref>
Unter physiologischen Bedingungen spielen neben dem systemischen [[Blutdruck]] zahlreiche systemische und lokale Faktoren eine Rolle:


=== Gefäßnerven ===
== Weblinks ==
{{Wiktionary}}
Die Wirkung des [[Sympathikus]] führt über die Freisetzung von [[Noradrenalin]] zu einer [[Vasokonstriktion|Verengung]] arterieller [[Widerstandsgefäß]]e und damit zu einer verminderten Durchblutung von nachgeschalteten Gewebsbezirken. Die Funktion des [[Parasympathikus]] beschränkt sich mit seiner [[Vasodilatation|gefäßerweiternden]] Funktion auf seine Wirkung auf [[Schweißdrüse|Schweiß-]] und [[Speicheldrüse]]n sowie die [[Genitalorgan]]e.
<!--=== Endothel ===-->

=== Autoregulation der Durchblutung ===
Die Durchblutung wichtiger Organe wie des [[Gehirn]]s (''siehe [[Blutversorgung_des_Gehirns#Physiologie|Blutversorgung des Gehirns]]''), der Nieren (''siehe [[Niere#Autoregulation_der_Nierendurchblutung|Autoregulation der Nierendurchblutung]]'') und des [[Magen-Darm-Trakt]]s (als einem Organsystem) wird durch Mechanismen gesichert, die in weiten Bereichen einen konstanten Blutfluss unabhängig vom systemischen Blutdruck gewährleisten sollen. Ein wichtiger Bestandteil dieser Autoregulation ist der sog. [[Bayliss-Effekt]], der auch als ''myogene Reaktion'' (der zuführenden Blutgefäße) bezeichnet wird.

=== Schwangerschaft ===
In der [[Schwangerschaft]] erhöht sich die Durchblutung der [[Gebärmutter]] (über die [[Arteria uterina|Aa. uterinae]]) von 50 zu Beginn auf 500–750 ml am Ende der Schwangerschaft, was letztlich einem Anteil von 10–15 Prozent am mütterlichen (''maternalen'') [[Herzminutenvolumen]] (HMV) entspricht (''uterine-'' bzw. [[maternoplazentare Durchblutung]]). Die treibende Kraft hier ist der mütterliche Blutdruck, während der fetale Blutdruck die sog. [[fetoplazentare Durchblutung]] ermöglicht. Von den gut 250–400 ml des fetalen HMV fließen an die 50–60 Prozent in die [[Nabelarterie]]n (''Aa. umbilicales'').<ref>{{Literatur |Herausgeber= |Autor=H. Steiner, K. T. M. Schneider |Titel=Dopplersonographie in Geburtshilfe und Gynäkologie: Leitfaden für die Praxis |Auflage= |Verlag=Springer |Ort= |Jahr=2007 |Seiten= |ISBN=3-540-72370-6 |Kommentar= [http://books.google.at/books?id=K8ugKP7Q_lQC&pg=PA10&lpg=PA10&ots=K66wh0gu1Y&dq=Durchblutung S. 10f]}}</ref>


== Einzelverweise ==
== Einzelnachweise ==
<references/>
<references />


{{Gesundheitshinweis}}
== Siehe auch ==
{{Normdaten|TYP=s|GND=4150875-0}}
* [[Hämodynamik]]


[[Kategorie:Herz-Kreislauf-Physiologie]]
[[Kategorie:Herz-Kreislauf-Physiologie]]

Aktuelle Version vom 20. Mai 2024, 12:15 Uhr

Als Durchblutung oder Perfusion (exakter Hämoperfusion) wird die Versorgung von Organen oder Organteilen mit Blut bezeichnet. Die Zufuhr erfolgt über Arterien, der Abfluss über Venen (und Lymphgefäße). Dies dient der Versorgung von Geweben mit Sauerstoff, Nährstoffen und anderen lebensnotwendigen Blutbestandteilen sowie dem Abtransport von Stoffwechselprodukten und Kohlenstoffdioxid. Die Organperfusion kann künstlich aufrechterhalten werden. Als Reperfusion wird die Wiederdurchströmung eines Organs nach vorübergehender Unterbrechung der Blutzufuhr (z. B. nach einer Embolie) bezeichnet.

Störungen unterschiedlichster Ursache werden als Durchblutungsstörungen bezeichnet und können akute und chronische Beeinträchtigungen verschiedener Organ- und Gewebsfunktionen bewirken und im äußersten Fall zur Zerstörung der minderdurchbluteten Organbezirke führen.

Quantifizierung

Auch als Perfusion (im Sinne einer quantifizierbaren Größe) bezeichnet wird das Blutvolumen , das pro Zeitspanne durch ein Organ oder allgemeiner durch biologisches Gewebe der Masse strömt. Abhängig von der Bezugsgröße ist die physikalische Einheit der Perfusion entweder (auf ein Organ wie etwa die Nieren bezogen):

oder (auf die regionale Durchblutung bezogen, auch als spezifische Perfusion bezeichnet):

.

Die (Gesamt-)Durchblutung der Nieren eines Erwachsenen beträgt beispielsweise ca. 1200 ml/min;[1] die spezifische Perfusion ist ungefähr 4 ml/(g·min).[2] Die Gesamtdurchblutung eines Organs lässt sich auch als Quotient des Druckabfalls zwischen arteriellem () und venösem Druck () und dem Gefäßwiderstand des Organs, also als beschreiben.[3]

Messbar ist die (spezifische) Perfusion mit verschiedenen bildgebenden Verfahren wie etwa der Perfusions-MRT, der Perfusions-CT oder mit nuklearmedizinischen Methoden.

Variabilität der Durchblutung

Es wird eine Ruhedurchblutung von einer maximal möglichen Durchblutung (oder Durchblutungsreserve) unterschieden. Dabei werden die einzelnen Organe sehr unterschiedlich stark mit Blut versorgt: In Ruhe erhalten die Nieren (im Verhältnis zu ihrem Gewicht) den relativ größten Blutanteil, bei maximaler Durchblutung sind dies die Muskulatur (Skelett- und Herzmuskulatur) und die Haut. Die bedarfsgerechte Anpassung des Blutflusses wird durch komplexe Steuerungsmechanismen gewährleistet.[4]

Schwangerschaft

In der Schwangerschaft erhöht sich die Durchblutung der Gebärmutter (über die Aa. uterinae) von 50 zu Beginn auf 500–750 ml/min am Ende der Schwangerschaft, was letztlich einem Anteil von 10–15 Prozent am mütterlichen (maternalen) Herzminutenvolumen (HMV) entspricht (uterine- bzw. maternoplazentare Durchblutung). Die treibende Kraft hier ist der mütterliche Blutdruck, während der fetale Blutdruck die sog. fetoplazentare Durchblutung ermöglicht. Von den gut 250–400 ml/min des fetalen HMV fließen an die 50–60 Prozent in die Nabelarterien (Aa. umbilicales).[5]

Wiktionary: Durchblutung – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Frans van den Berg (Hrsg.): Angewandte Physiologie 2: Organsysteme verstehen. 2. Auflage. Georg-Thieme-Verlag, Stuttgart 2005, ISBN 3-13-117082-4, S. 126 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. Robert F. Schmidt, Florian Lang, Gerhard Thews (Hrsg.): Physiologie des Menschen: Mit Pathophysiologie. 29. Auflage. Springer, Berlin Heidelberg New York 2005, ISBN 3-540-21882-3, S. 809 (eingeschränkte Vorschau in der Google-Buchsuche).
  3. Péter Bálint: Normale und pathologische Physiologie der Nieren. VEB Volk und Gesundheit, Berlin 1969, S. 69–70 (eingeschränkte Vorschau in der Google-Buchsuche).
  4. Rainer Klinke, Stefan Silbernagl (Hrsg.): Lehrbuch der Physiologie. 4. Auflage. Georg Thieme, Stuttgart, New York, ISBN 3-13-796004-5, S. 169 ff.
  5. H. Steiner, K. T. M. Schneider: Dopplersonographie in Geburtshilfe und Gynäkologie: Leitfaden für die Praxis. Springer, 2007, ISBN 3-540-72370-6, S. 10 ff. (eingeschränkte Vorschau in der Google-Buchsuche).