Stern

Der folgende Artikel beschreibt Sterne im Universum. Andere Bedeutungen des Wortes unter Stern (Begriffsklärung).


Datei:Sun SOHO image.jpg
Unser Stern, die Sonne, im extremen Ultraviolett (304 Ångström) (Quelle: The SOHO EIT Consortium; SOHO is a joint ESA-NASA program)

Unter einem Stern versteht man einen selbstleuchtenden Himmelskörper, der in der aktiven Phase seiner Existenz durch Fusionsprozesse im Sterninneren Strahlungsenergie freisetzt und aus Plasma besteht. Aber auch braune Zwerge, die hinsichtlich ihrer Masse zwischen grossen Gasplaneten und Sternen angesiedelt sind, sowie die kompakten Endstadien der Sternentwicklung, wie Neutronensterne und weiße Zwerge, werden zu der den Sternen gezählt, obwohl sie lediglich aufgrund ihrer Restwärme Strahlung abgeben.

Früher wurde der Begriff Fixstern zur Abgrenzung gegenüber Wandelstern (heute: Planet) verwendet. Aber auch diese Fixsterne bewegen sich, wenn auch nur sehr langsam. So werden in einigen tausend Jahren die heutigen Sternbilder nicht mehr erkennbar sein.

Einleitung

Am gesamten Himmel sind etwa 6.000 Sterne mit dem bloßen Auge zu erkennen. Aufgrund ihrer enormen Entfernung sind sie in Wirklichkeit deutlich kleiner als die scheinbaren Punkte, die wir sehen. So erscheinen sie selbst in den besten Teleskopen nur punktförmig. Das Flackern der Sterne, das gelegentlich beobachtbar ist, beruht lediglich auf Turbulenzen in der Erdatmosphäre.

Der Anblick dieser scheinbar strukturlosen Punkte am Himmel täuscht leicht darüber hinweg, dass Sterne nicht nur bezüglich ihrer Entfernung sondern auch hinsichtlich der immensen Variationsbreiten von Temperaturen, Leuchtkraft, Massendichte, Volumen und Prozesszeiten Wertebereiche überspannen, die man durchaus als astronomisch bezeichnen kann, und die extrem unterschiedliche Erscheinungsformen mit erheblichem inneren Strukturreichtum zur Folge haben. Dieser Artikel kann daher nur einen groben Überblick bieten und auf weiterführende Artikel verweisen.

Sternbilder und Sternbezeichnungen

Sterne haben in allen Kulturen eine wichtige Rolle gespielt und die menschliche Vorstellung inspiriert. Sie wurden religiös interpretiert und zur Orientierung und Navigation benutzt. Die in unserem Kulturkreis bekannten Sternbilder gehen teilweise auf die Babylonier und die griechische Antike zurück. Die zwölf Sternbilder des Tierkreis bildeten die Basis der Astrologie, aber aufgrund der Präzession sind die sichtbaren Sternbilder heute gegen die astrologischen Tierkreiszeichen um etwa ein Zeichen verschoben.

Etwa ab 1600 nutzte die Astronomie die Sternbilder zur namentlichen Kennzeichnung der Objekte in den jeweiligen Himmelregionen. So wurden 1922 von der Internationalen Astronomischen Union (IAU), die auch für die offizielle Sternbenennung zuständig ist, die heute üblichen 88 Sternbilder und ihre exakten Grenzen festgelegt. Viele der heute bekannten Eigennamen wie Algol, Deneb oder Regulus sind allerdings wesentlich älter als die IAU und entstammen dem Arabischen und Lateinischen.

Ein noch heute weit verbreitetes System zur Benennung der jeweils hellsten Sterne eines Sternbildes geht auf die Sternkarten des deutschen Astronomen Johann Bayer zurück. Die Bayer-Bezeichnung eines Sterns besteht aus einem griechischen Buchstaben gefolgt vom Genitiv des lateinischen Namens des Sternbilds, in dem der Stern liegt; so bezieht sich z. B. γ Lyrae auf den dritthellsten Stern im Sternbild Leier. Ein ähnliches System wurde durch den britischen Astronomen John Flamsteed eingeführt: Die Flamsteed-Bezeichnung eines Sterns wird aus einer vorangestellten fortlaufenden Zahl und wiederum dem Genitiv des lateinischen Namens des Sternbilds gebildet, wie zum Beispiel bei 13 Lyrae. Die Flamsteed-Bezeichnung wird oft dann gewählt, wenn für einen Stern keine Bayer-Bezeichnung existiert.

Die meisten Sterne tragen allerdings keinen eigenen Namen, sondern werden lediglich durch ihre Nummer in einem Sternkatalog identifiziert.

Sternverteilung und -dynamik

Alle mit bloßem Auge erkennbaren Sterne gehören unserer Galaxis an. Sie scheinen sich entlang eines Bandes zu konzentrieren, der Milchstraße, die die Ebene dieser Galaxis markiert. Galaxien bestehen aus einigen Millionen bis zu Hunderten von Milliarden Sternen und sind ihrerseits in Galaxienhaufen angeordnet. Nach Schätzungen der Astronomen gibt es im gesamten sichtbaren Universum etwa 100 Milliarden solcher Galaxien mit insgesamt etwa 70 Trilliarden (7 x 1022) Sternen. Aber auch innerhalb einer Galaxie sind die Sterne nicht gleichmäßig verteilt, sondern bilden teilweise offene Sternhaufen wie beispielsweise die Plejaden, auch Siebengestirn genannt, oder Kugelsternhaufen, die sich im Halo von Galaxien befinden. Darüber hinaus stehen sie im galaktischen Zentrum deutlich dichter als in den Randbereichen.

Aufgrund der Gravitation umkreisen sie das galaktische Zentrum mit Geschwindigkeiten im Bereich von einigen duzend km/s und benötigen typischerweise für einen Umlauf mehrere 100.000 Jahre. Zum Zentrum hin stellen sich jedoch deutlich kürzere Umlaufzeiten ein.

Der uns nächste Stern ist die Sonne, der übernächste ist Proxima Centauri und befindet sich in einer Entfernung von 4,24 Lichtjahren.

Zustandsgrößen der Sterne

Datei:H-R-Diagramm.png
Farben-Helligkeits-Diagramm, schematisch. Die logarithmische Helligkeitsskala erstreckt sich über mehr als 4 Zehnerpotenzen. Links befinden sich der blaue und rechts der rote Spektralbereich. Das eingezeichnete Linienfeld markiert Spektralklassen B0 bis M0 und Helligkeitsklassen Ia bis V.

Sterne lassen sich mit wenigen Zustandsgrößen nahezu vollständig charakterisieren. Die wichtigsten nennt man fundamentale Parameter:

Die Oberflächentemperatur, die Schwerebeschleunigung und die Häufigkeit der chemischen Elemente an der Sternoberfläche lassen sich unmittelbar aus dem Sternspektrum ermitteln. Ist die Entfernung eines Sterns bekannt, beispielsweise durch die Messung seiner Parallaxe, so kann man die Leuchtkraft über die scheinbaren Helligkeit berechnen, die durch Photometrie gemessen wird. Aus diesen Informationen können schließlich der Radius und die Masse des Sterns berechnet werden. Die Rotationsgeschwindigkeit v am Äquator kann nicht direkt bestimmt werden, sondern nur die projizierte Komponente v sini mit der Inklination i, die die Orientierung der Rotationsachse beschreibt.

Mehr als 99 Prozent aller Sterne lassen sich innerhalb des Hertzsprung-Russell-Diagramms oder des verwandten Farben-Helligkeits-Diagramms eindeutig einer Spektralklasse sowie einer Leuchtkraftklasse zuordnen. Durch eine Eichung anhand der bekannten Zustandsgrößen einiger Sternen erhält man die Möglichkeit, die Zustandsgrößen anderer Sterne unmittelbar aus ihrer Position in diesem Diagramm abzuschätzen.

Letztlich ist die Bahn eines Sternes in diesem Diagramm im Verlauf seiner aktiven Phase weitgehend durch eine einzige Größe festgelegt, nämlich seine anfängliche Masse. Dabei verharren die Sterne die meiste Zeit auf der Hauptreihe, entwickeln sich im Spätstadium zu roten Riesen und enden teilweise als weiße Zwerge. Diese Stadien werden im Abschnitt über die Sternentwicklung näher beschrieben.

Der Wertebereich einiger Zustandsgrößen überdeckt viele Größenordnungen. Die Oberflächentemperaturen von Hauptreihensternen reichen von etwa 3.000 K bis 45.000 K, ihre Massen von 0,15 bis 60 Sonnenmassen und ihre Radien von 0,2 bis 15 Sonnenradien. Rote Riesen sind deutlich kühler und können so groß werden, dass die komplette Erdbahn in ihnen Platz hätte, bei manchen sogar die des Mars. Weiße Zwerge haben Temperaturen bis zu 100.000 K, sind aber nur so klein wie die Erde, obwohl ihre Masse mit der der Sonne vergleichbar ist.

Sternentstehung

Ein großer Anteil der Sterne ist im Frühstadium des Universums vor über 10 Milliarden Jahren entstanden. Aber auch heute bilden sich noch Sterne. Die typische Sternentstehung verläuft nach folgendem Schema:

Aufnahmen eines entstehenden Sterns: oben ein leuchtender Jet von 12 Lichtjahren Länge in einer optischen Aufnahme, unten ist die Staubscheibe als dunkler Balken im Infraroten zu erkennen
  1. Ausgangspunkt für die Sternentstehung ist eine Gaswolke, die überwiegend aus Wasserstoff besteht, und die aufgrund ihrer eigenen Schwerkraft kollabiert. Das geschieht, wenn die Schwerkraft den Gasdruck dominiert, und damit das Jeans-Kriterium erfüllt ist. Auslöser kann beispielsweise die Druckwelle einer nahen Supernova, Dichtewellen in der interstellaren Materie oder der Strahlungsdruck bereits entstandener Jungsterne sein.
  2. Durch die weitere Verdichtung der Gaswolke entstehen einzelne Globulen, aus denen anschließend die Sterne hervorgehen: Dabei entstehen die Sterne selten isoliert, sondern eher in Gruppen.
  3. Bei der weiteren Kontraktion der Globulen steigt die Dichte und wegen der freiwerdenden Gravitationsenergie die Temperatur weiter an und der Stern erreicht im Zentrum die notwendigen Bedingungen für hydrostatisches Gleichgewicht ist aber noch weitgehend konvektiv. Die Kontraktion ist nun beendet und der Stern befindet sich im Farben-Helligkeits-Diagramm direkt links von der Hayashi-Linie, welche eine nahezu senkrechte Linie im Farben-Halligkeits-Diagramm definiert, deren Position von der Sternmasse abhängt, und rechts von dieser stabiles hydrostatisches Gleichweicht nicht möglich ist. Entlang der Hayashi-Linie bewegt sich der Stern in seiner weiteren Entwicklung bis zum Erreichen des Strahlungsgleichgewichtes zunächst nach unten. Danach zweigt der Stern im Farben-Helligkeits-Diagramm nach links ab und bewegt sich nahezu horizontal auf die Hauptreihe zu wo das Wasserstoffbrennen einsetzt, d. h. die Kernfusion von Wasserstoff zu Helium durch den Bethe-Weizsäcker-Zyklus oder die Proton-Proton-Reaktion. Als Folge des Drehimpulses der Globule bildet sich eine Scheibe aus, die den junge Stern umkreist, und aus der er weiter Masse akkretiert. Aus dieser Akkretionsscheibe können Planeten, die Exoplaneten, entstehen, beziehungsweise bei ausreichend großem Drehimpuls die beiden Komponenten eines Doppelsternensystems. Aus der Ebene der Scheibe wird die Ekliptik. Bei der Akkretion aus der Scheibe bilden sich auch in beide Richtungen der Polachsen Materie-Jets (siehe Bild), die eine Länge von über 10 Lichtjahren erreichen können.

Je nach Masse ergeben sich verschiedene Szenarien der Sternentstehung:

  • Sterne mit mehr als etwa 60 Sonnenmassen können durch den Akkretionsprozess vermutlich gar nicht entstehen, da diese Sterne bereits im Akkretionsstadium einen dermaßen starken Sternwind produzieren würden, dass der Massenverlust die Akkretionsrate übersteigt würde. Sterne dieser Größe, wie z. B. die blauen Vagabunden, entstehen vermutlich durch Sternkollisionen.
  • Massereiche und damit heiße Sterne mit mehr als 8 Sonnenmassen kontrahieren vergleichsweise schnell. Nach der Zündung der Kernfusion treibt die UV-reiche Strahlung die umgebende Globule schnell auseinander und der Stern akkretiert keine weitere Masse. Sie gelangen deshalb sehr schnell auf die Hauptreihe im Hertzsprung-Russell-Diagramm.
  • Sterne zwischen etwa 3 und 8 Sonnenmassen durchlaufen eine Phase, in der sie Herbig-Ae- und -Be-Sterne genannt werden. In dieser Phase befindet sich der Stern schon auf der Hauptreihe, akkretiert aber noch einige Zeit Masse.
  • Masseärmere Sterne wie die Sonne bleiben nach der Zündung der Kernfusion noch einige Zeit in die Globule eingebettet und akkretieren weiter Masse. In dieser Zeit sind sie nur im infraroten Spektralbereich erkennbar. Während sie sich der Hauptreihe annähern, durchlaufen sie das Stadium der T-Tauri-Sterne.
  • Sterne unter 0,08 Sonnenmassen, d. h. etwa 80 Jupitermassen, erreichen nicht die nötige Temperatur, um die Kernfusion zu zünden, und werden zu braunen Zwergen.

Aus einer Globule kann sowohl ein Doppel- oder Mehrfachsternsystem als auch ein einzelner Stern entstehen. Wenn sich Sterne in Gruppen bilden, können aber auch unabhängig voneinander entstandene Sterne durch gegenseitigen Einfang Doppel- oder Mehrfachsternsysteme bilden. Man schätzt, dass etwa zwei Drittel aller Sterne Bestandteil eines Doppel- oder Mehrfachsternsystems sind.

Im Frühstadium des Universums standen für die Sternentstehung nur Wasserstoff und Helium zur Verfügung. Diese Sterne zählt man zur so genannten Population II. Man findet sie vor allem im Halo der Milchstraße. Sterne die später entstanden sind, enthalten von Anfang an einen gewissen Anteil an in früheren Sterngenerationen durch Kernreaktionen erzeugten schweren Elementen, die beispielweise über Supernova-Explosionen anderer Sterne in die interstellare Materie gelangt sind. Dazu gehören die meisten Sterne der Galaxienscheibe. Man bezeichnet sie als Population I.

Ein Beispiel für eine aktive Sternentstehungsregion ist NGC3603 im Sternbild Schiffskiel in einer Entfernung von 20.000 Lichtjahren. Sternentstehungsprozesse werden im Infraroten und im Röntgenbereich beobachtet, da diese Spektralbereiche durch die umgebenden Staubwolken kaum absorbiert werden, anders als das sichtbare Licht. Dazu werden Satelliten eingesetzt wie beispielsweise das Röntgenteleskop Chandra.

Sternentwicklung

Der weitere Verlauf der Sternentwicklung wird im Wesentlichen durch die Masse bestimmt. Je größer die Masse eines Sternes ist, umso kürzer ist seine Brenndauer. Die massereichsten Sterne verbrauchen in nur wenigen hunderttausend Jahre ihren gesamten Brennstoff. Ihre Strahlungsleistung übertrifft dabei die der Sonne um das 10.000fache oder mehr. Die Sonne dagegen hat nach 5 Milliarden Jahren erst etwa die Hälfte ihrer Hauptreihenphase verbracht. Die massenarmen roten Zwerge entwickeln sich noch wesentlich langsamer. Da das Universum erst etwa 14 Milliarden Jahre alt ist, hat von den masseärmsten Sternen noch kein einziger die Hauptreihe verlassen.

Neben der Masse ist der Anteil an schweren Elementen von Bedeutung. Neben seinem Einfluss auf die Brenndauer bestimmt er, ob sich beispielsweise Magnetfelder bilden können, oder wie stark der Sternwind wird, der zu einem erheblichen Massenverlust im Laufe der Sternentwicklung führen kann. Die folgenden Entwicklungsszenarios beziehen sich auf Sterne mit solaren Elementhäufigkeiten, wie sie für die meisten Sterne in der Scheibe der Milchstraße üblich sind. In den magellanschen Wolken beispielsweise, zwei Zerggalaxien in der Nachbarschaft der Milchstrasse, haben die Sterne jedoch einen deutlich geringeren Anteil an schweren Elementen.

Sterne verbringen nach ihrer Entstehung den größten Teil ihrer Brenndauer auf der Hauptreihe, die schwereren Sterne links oben im Farben-Helligkeits-Diagramm, die leichteren rechts unten. Im Verlauf dieser Hauptreihenphase werden die Sterne größer und bewegen sich in Richtung der Riesensterne.

Die Kernfusion von Wasserstoff zu Helium findet dabei in einem Zentralbereich des Sternes statt, der nur wenige Prozent seines Gesamtvolumens einnimmt, jedoch etwa die Hälfte seiner Masse enthält. Die Temperatur beträgt dort über 10 Millionen Kelvin. Dort sammeln sich auch die Fusionsprodukte an. Der Energietransport an die Sternoberfläche dauert mehrere hunderttausend Jahre. Er findet über Strahlungstransport, Wärmeleitung oder Konvektion statt. Die Bereich, der die Strahlung in den Weltraum abgibt, nennt man die Sternatmosphäre. Ihre Temperatur beträgt mehrere tausend bis mehrere zehntausend Kelvin.

Mit dem Erlöschen des Wasserstoffbrennens im Zentrum verlassen die Sterne die Hauptreihe. Die weitere Entwicklung verläuft für massearme und massereiche Sterne deutlich verschieden. Dabei bezeichnet man Sterne bis zu 2,3 Sonnenmassen als massenarm.

  • Massearme Sterne bis zu 0,3 Sonnenmassen führen die Fusion des Wasserstoffs in einer wachsenden Schale um den erloschenen Kern fort. Sie erlöschen nach dem Ende dieses so genannten Schalenbrennens vollständig. Durch die Temperaturabnahme im Zentrum geben sie der Schwerekraft nach und kontrahieren zu weißen Zwergen mit Durchmessern von einigen tausend Kilometern. Dadurch steigt die Oberflächentemperatur zunächst stark an. Im weiteren Verlauf kühlen die weißen Zwerge jedoch ab und enden schließlich als schwarze Zwerge.
Planetarischer Nebel Messier 57
Nebel um den extrem massereichen Stern eta Carinae, entstanden durch Massenverlust
  • Massearme Sterne zwischen 0,3 und 2,3 Sonnenmassen, wie die Sonne selbst, erreichen durch weitere Kontraktion die zum Heliumbrennen notwendige Temperatur und Dichte in ihrem Kern. Bei der Zündung des Heliumbrennens spielen sich innerhalb von Sekunden dramatische Prozesse ab, bei denen der Leistungsumsatz im Zentrum auf das 100 Milliardenfache der Sonnenleistung ansteigen kann, ohne dass an der Oberfläche davon etwas erkennbar ist. Diese Vorgänge bis zur Stabilisierung des Heliumbrennens werden als Heliumflash bezeichnet. Beim Heliumbrennen entstehen Elemente bis zum Kohlenstoff, insbesondere Stickstoff und Sauerstoff. Gleichzeitig findet in einer Schale um den Kern noch Wasserstoffbrennen statt. Durch den Temperatur- und Leistungsanstieg expandieren die Sterne zu roten Riesen mit Durchmessern von typischerweise dem 100fachen der Sonne. Dabei werden oft die äußeren Hüllen der Sterne abgestoßen und bilden Planetarische Nebel. Schließlich erlischt auch das Heliumbrennen und die Sterne werden zu weißen Zwergen wie oben beschrieben.
  • Massereiche Sterne zwischen 2,3 und 8 Sonnenmassen erreichen nach dem Heliumbrennen das Stadium des Kohlenstoffbrennens, bei dem Elemente bis zum Eisen entstehen. Durch Sternwind oder die Bildung Planetarischer Nebel verlieren diese Sterne jedoch einen erheblichen Teil ihrer Masse. Sie geraten so unter die kritische Grenze für eine Supernova-Explosion und werden ebenfalls zu weißen Zwergen.
  • Massereiche Sterne über 8 Sonnenmassen verbrennen in den letzten Jahrtausenden ihres Lebenszyklus praktisch alle leichteren Elemente in ihrem Kern zu Eisen. Eisen ist in gewissem Sinne die Sternenasche, da aus ihm weder durch Fusion noch durch Kernspaltung weitere Energie gewonnen werden kann. Gleichzeitig bilden sich um den Kern Schalen nach Art einer Zwiebel, in denen verschiedene Fusionsprozesse stattfinden. Die Zustände in diesen Schalen unterscheiden sich dramatisch. Das sei exemplarisch am Beispiel eines Sternes mit 18 Sonnenmassen dargestellt, der die 40.000fache Sonnenleistung und den 50fachen Sonnendurchmesser aufweist:
  Brennmaterial  
(bzw. Fe)
Temperatur in
 Millionen Kelvin 
  Dichte [kg/cm3]   Brenndauer
H 40 0,006   10 Millionen J.  
He 190 1,1 1 Millionen J.
C 740 240 12.000 Jahre
Ne 1.600 7.400 12 Jahre
O 2.100 16.000 4 Jahre
S/Si 3.400 50.000 1 Woche
Fe-Kern 10.000   10.000.000   -
Die Grenze zwischen der Helium- und der Kohlenstoffzone ist hinsichtlich des relativen Temperatur- und Dichtesprungs vergleichbar mit der Erdatmosphäre über einem Lavasee. Ein erheblicher Teil der gesamten Sternmasse konzentriert sich im Eisenkern mit einem Durchmesser von nur 10.000 km. Sobald er die Chandrasekhar-Grenze von 1,44 Sonnenmassen überschreitet, findet eine Supernova vom Typ II statt. Dabei kollabiert der Eisenkern innerhalb weniger Sekunden während die äußeren Schichten durch freigesetzte Energie in Form von Neutrinos und Strahlung abgestoßen werden und eine expandierende Explosionswolke bilden.
Das Endprodukt einer Supernova, d. h. ob der Stern vollständig zerreißt, ein Neutronenstern oder ein Schwarzes Loch entsteht, hängt von den Einzelheiten der Explosion ab, die z. B. von der Rotation des Vorläufersterns oder dessen Magnetfeld beeinflusst werden. Möglich wäre auch ein Quarkstern, dessen Existenz jedoch bisher lediglich hypothetisch ist.

Veränderliche Sterne

Die scheinbare und oft auch die absolute Helligkeit mancher Sterne unterliegt zeitliche Schwankungen. Man unterscheidet folgende drei Typen:

  • Bedeckungsveränderliche. Dabei handelt es sich um Doppelsterne, die sich während ihres Umlaufes zeitweise verdecken.
  • Pulsationsveränderliche. Dabei verändern sich die Zustandsgrößen mehr oder weniger periodisch und damit auch die Leuchtkraft. Die meisten Sterne durchlaufen solche instabile Phasen während ihrer Entwicklung, meist aber erst nach dem Hauptreihenstadium. Man unterscheidet:
    • Cepheiden. Ihrer Periode lässt sich exakt einer bestimmten Leuchtkraft zuordnen. Sie sind daher bei der Entfernungsbestimmung als so genannte Standardkerzen von großer Bedeutung.
    • Mira-Sterne. Ihre Periode ist länger und unregelmäßiger als die der Cepheiden.
    • RR-Lyrae-Sterne. Sie pulsieren sehr regelmäßig mit vergleichsweise kurzer Periode und haben etwa die 90fache Leuchtkraft der Sonne.
  • Eruptiv Veränderliche. Sie erleiden für kurze Zeiten Ausbrüche, die sich oft in mehr oder weniger unregelmäßigen Abständen wiederholen. Man unterscheidet:
    • Zwergnovae oder Kataklysmisch Veränderliche. Sie erleiden Ausbrüchen in Abständen von wenigen Stunden.
    • Novae. Dabei strömt Materie von einem roten Riesen zu einem kompakten Begleitern und zündet beim Erreichen einer kritischen Masse auf dessen Oberfläche eine Kernfusion nach Art einer Wasserstoffbombe.
    • Supernovae.

Kataklysmische Veränderliche und Novae sind Doppelsternphänomene, es tritt bei Einzelsternen nicht auf. Bei Supernovae gibt es mehrere Typen, von denen Typ Ia ebenfalls ein Doppelsternphänomen ist, nur die Typen Ib, Ic und II markieren das Ende der Evolution eines massereichen Sterns.

Nukleosynthese und Metallizität

Elemente schwerer als Helium werden fast ausschlieslich durch Kernreaktionen in Sternen erzeugt. Dabei können Elemente bis zur Kernladungszahl von Eisen in thermonuklearen Reaktionen z.B. in Hauptreihensternen erzeugt werden, während Elemente schwerer als Eisen nur durch das Einfangen von Nuklearteilchen erzeugt werden. Hauptsächlich entstehen schwere Elemente durch Neutronenanlagerung mit nachfolgendem β-Zerfall in kohlenstoffbrennenden Riesensternen im s-Prozess oder in der ersten, explosiven Phase einer Supernova im r-Prozess. Hierbei steht s für slow und r rapid. Neben diesen beiden häufigsten Prozessen, die im Endergebnis zu deutlich unterscheidbaren Signaturen in den Elementhäufigkeiten führen, läuft Protonenanlagerung und Spallation ab.

Die entstandenen Elemente werden zum grossen Teil wieder in die interstellare Materie eingespeist, aus dem weitere Generationen von Sternen entstehen. Je öfter dieser Prozess bereits durchlaufen wurde, um so mehr sind die Elemente, die schwerer als Helium sind, angereichert. Für diese Elemente hat sich in der Astronomie der Sammelbegriff Metalle eingebürgert. Da sich diese Metalle einigermassen gleichmässig anreichern, genügt es oft, statt der einzelnen Elementhäufigkeiten die Metallizität anzugeben. Sterne, deren relative Häufigkeitsmuster von diesem Schema abweichen, werden als chemisch pekuliar bezeichnet. Spätere Sternengenerationen haben folglich eine höhere Metallizität. Die Metallizität ist deswegen ein Mass für das Entstehungsalter eines Sternes.

Kauf von Sternen

Es gibt eine Reihe von Firmen und auch Sternwarten, die zahlenden Kunden anbieten, Sterne nach ihnen zu benennen. Diese Namen werden jedoch von niemandem außer der registrierenden Firma und dem Kunden anerkannt und nichts vermag verschiedene Firmen davon abzuhalten, den selben Stern zu "verkaufen". Eine Firma wird sich lediglich hüten, den selben Stern an mehrere ihrer Kunden zu vergeben, da dies der beworbenen Leistung widerspricht und so als Betrug geahndet werden kann; angesichts der praktisch unerschöpflichen Zahl an Sternen ist diese Einschränkung jedoch kein Hindernis. Die Internationale Astronomische Union hat sich deutlich von dieser Praxis distanziert.

Bei Sternwarten wird der "Sternkauf" gelegentlich unter dem Namen "Sternpatenschaft" angeboten, die meist explizit der finanziellen Unterstützung der jeweiligen Institution dient.

Siehe auch: astronomische Objekte, Liste der Sterne

Literatur

  • H.H. Voigt, Abriß der Astronomie, 4. überarb. Aufl. ISBN 3-411-03148-4,
  • H. Scheffler, H. Elsässer, Physik der Sterne und der Sonne, 2. überarb. Aufl. ISBN 3-411-14172-7,
  • R. Kippenhahn, A. Weigert, Stellar structure and evolution, 2nd corr. ed., ISBN 3-540-50211-4 (englisch)