„Diskussion:Regenbogen“ – Versionsunterschied

Inhalt gelöscht Inhalt hinzugefügt
K Änderungen von 95.222.228.77 (Diskussion) rückgängig gemacht und letzte Version von Andys wiederhergestellt
Auf meine Einwände zu den Nebenbögen und dunklen Bändern wurde nicht eingegangen, sondern diese kommentarlos entfernt.
Zeile 910: Zeile 910:
Ist entsprechend behandelt unter Nebenbögen. --[[User:Andys|Andys]] | [[User talk:Andys|☎]] 18:49, 3. Jan. 2010 (CET)
Ist entsprechend behandelt unter Nebenbögen. --[[User:Andys|Andys]] | [[User talk:Andys|☎]] 18:49, 3. Jan. 2010 (CET)


: Ok, das ist im Artikel erwähnt. Aber explizit und genauer wird nur der Fall von zwei Reflexionen betrachtet. Interessant sind aber gerade auch die „Nebenbögen“ für 3 oder 4 Reflexionen, die im Gegensatz zu den ersten beiden nicht gegenüber der Sonne, sondern neben der Sonne im Abstand kleiner 50° erscheinen. Bei drei Reflexionen erscheint der Innere Kreisbogen blau. Ich habe in der Wikipedia schon Bildern mit Regenbögen gefunden, die offenbar aus drei Reflexionen resultieren. Aber offenbar will hier niemand einsehen, dass es solche Regenbögen gibt, obgleich sie ja bereits im 19. Jahrhundert detailiert beschrieben und sogar wissenschaftlich korrekt erklärt wurden. Die Geschichte mit dem Helligkeitskontrast beim Hauptbogen und dem dunklen Band ist eindeutig Blödsinn und nicht einmal mit Quellenangaben belegt. Im Innern des hellen Bogens ist doch eindeutig die Landschaft hinter dem Bogen (kein Speigelbild) erkennbar. Es handelt sich daher nicht um in den Wassertropfen reflektiertes Licht. Der starke [[Kontrast]] kann daher nicht erklärt werden. Das entsprechende Bild, ist offenbar manipuliert worden. --[[Spezial:Beiträge/95.222.228.77|95.222.228.77]] 10:22, 12. Jan. 2010 (CET)
=== Bedingung für Maximum der Intensität ===
=== Bedingung für Maximum der Intensität ===



Version vom 12. Januar 2010, 11:32 Uhr

Zum Archiv
Wie wird ein Archiv angelegt?

Diese Diskussionsseite dient dazu, Verbesserungen am Artikel „Regenbogen“ zu besprechen. Persönliche Betrachtungen zum Thema gehören nicht hierher. Für allgemeine Wissensfragen gibt es die Auskunft.

Füge neue Diskussionsthemen unten an:

Klicke auf , um ein neues Diskussionsthema zu beginnen.


Abgeschlossen Lesenswert-Kandidatur (angenommen)

Ein Regenbogen ist ein Phänomen der atmosphärischen Optik, das als kreisbogenförmiges Lichtband mit allen Spektralfarben in einem charakteristischen Farbverlauf wahrgenommen wird. Er entsteht durch das Wechselspiel annähernd kugelförmiger Wassertropfen mit dem Sonnenlicht. Dieses wird bei Ein- und Austritt aus den Tropfen wellenlängenabhängig gebrochen und an der rückwärtigen inneren Oberfläche richtungsabhängig reflektiert.

In meinen Augen ein sehr guter Artikel, der sowohl die physikalischen Hintergründe sehr genau wiedergibt, aber auch die kulturelle Bedeutung des Regenbogens umfassend schildert.

  • Pro--Christian Gawron 11:30, 27. Dez 2005 (CET)
  • Pro Geht IMHO schon in Richtung Exzellenz. --Zinnmann d 15:28, 27. Dez 2005 (CET)
  • Pro Sehr schön und umfassend. --Vesta 17:05, 27. Dez 2005 (CET)
  • Laien-Pro, umfangreich, interessant & mit Gewinn gelesen --Pischdi >> 23:07, 27. Dez 2005 (CET)
  • Pro Sehr lesenswert und umfassend. --Whrbln 13:41, 29. Dez 2005 (CET)
  • Pro Umfassend, umfangreich, interessant, gute Bilder Jakobdoerr 19:09, 29. Dez 2005 (CET)

Entfernung des Regenbogens

Jedem aufmerksamen Beobachter ist sicher bereits aufgefallen, dass sich das Phänomen eines Regenbogens keineswegs nur im Unendlichen abspielt, sondern dass sich der Bogen deutlich vor Objekten in der Nähe des Betrachters abzeichnet. Dies wird sehr anschaulich bei der Benutzung eines Gartenschlauches, ist aber auch in der Natur zu beobachten, z.B. vor Erhebungen, Gebäuden oder Bäumen. Ich denke es wäre zum Verständnis wichtig, darauf hinzuweisen, dass es niemals nur einen Regenbogen gibt, sondern grundsätzlich so viele Regenbögen, wie Beobachter. Selbst zwei unmittelbar nebeneinander stehende Betrachter sehen nicht denselben, sondern zwei, wenn auch nur minimal verschobene Bögen, da der optische Winkel der gebrochenen Lichtstrahlen geringfügig unterschiedlich ist. --80.245.147.81 13:25, 5. Apr 2006 (CEST)


Radius des Regenbogens

Meine Kinder haben mich gefragt, warum der Kreis des Regenbogens unterschiedliche Radien hat... Da bin ich schwer ins grübeln gekommen. Ich glaube, der Kreis ist eine Funktion vom Sonnenwinkel, dem Abstand der Regentropfen vom Betrachter und der Beobachtungshöhe. Stimmt das?

Warum wir den Regenbogen unterschiedlich groß sehen oder besser -- breit sehen, liegt daran, dass der Regenbogen je nach Tageszeit unterschiedlich hoch steht, wir also immer nur einen Teil des Regenbogens sehen, der unterschiedlich groß ist. Der Radius des Regenbogen beträgt immer 42° um die Gegensonne. Die Gegensonne ist der Punkt, der der Sonne genau gegenüberliegt. Steht z. B. die Sonne 32° Richtung Süden über den Horizont, so ist die Gegensonne 32° unter dem Horizont Richtung Norden. Da der Radius des Regenbogens 42° beträgt, sehen wir noch das obere Stück des Bogens. Wenn die Sonne höher als 42° steht, liegt der Regenbogen also unter dem Horizont und ist nicht sichtbar. Veranschaulichen kann man sich dieses, indem man sich auf ein Papier einen Kreis (=Regenbogen) zeichnet. Jetzt deckt man mit einem weiteren Stück Papier die untere Hälfte des Kreises zu, so dass man nur die obere Hälfte sieht. Dieses ist quasi der Horizont und gibt gleichzeitig die Sonnenhöhe an (also hier kurz vor Sonnenuntergang, wo die Sonne am Horizont steht). Wenn man jetzt das zweite Papier nach oben schiebt (höherer Sonnenstand), so sieht man immer weniger vom Kreis, bis man schließlich nichts mehr vom Kreis sehen kann (Sonne über 42° im Sommer zur Mittagszeit). Der Kreisbogen hat also immer den gleichen Radius, aber das, was wir vom Regenbogen sehen, hängt von der Höhe der Sonne ab.MadDog 20:04, 21. Mai 2006 (CEST)Beantworten

Noch einer (... ein Eisregen(bogen))

Daily Mail, Barry Wigmore, 8. Juni 2006 (engl.)

Regenbogen über Bingen

Ich habe mir erlaubt, den Regenbogen über Bingen einzusetzen. Bei Regenbogenfotos mangelt es aus meiner Sicht häufig etwas an der Kulisse. Die Amerikaner haben da zum Teil bessere Möglichkeiten.--Manfred Heyde 20:39, 22. Jun. 2007 (CEST)Beantworten

Violette Ringe

Gestern hab ich auf einer Radtour einen recht speziellen Regenbogen gesehen. Es waren ziemlich gute Bedingungen und der Bogen war entsprechend hell und hatte einen deutlichen Außenbogen. Aber innerhalb des Hauptbogens setzte sich nach violett das Spektrum fort: Es ging weiter nach innen und es erschienen weitere Ringe, die allesamt violett waren und in etwa einen Abstand voneinander hatten wie die Farben des normalen Bogens. Zeitweise konnte ich bis zu vier Ringe ineinander sehen. Hier ist es auch im Ansatz erkennbar (im Scheitel) --Versusray | Diskutiere mich! 11:51, 25. Jul. 2007 (CEST)Beantworten

Nacht-Regenbogen

Ich habe letztens einen Regenbogen in der Nacht gesehen. Es hat leicht geregnet und es war Vollmond. Im Bogen waren aber keine Farben erkennbar, er war nur weiß. Kann mir jemand etwas über dieses Phänomen sagen?

Siehe Mondregenbogen --Versusray | Diskutiere mich 10:37, 17. Aug. 2007 (CEST)Beantworten

Bei mehreren automatisierten Botläufen wurde der folgende Weblink als nicht verfügbar erkannt. Bitte überprüfe, ob der Link tatsächlich unerreichbar ist, und korrigiere oder entferne ihn in diesem Fall!

Die Webseite wurde vom Internet Archive gespeichert. Bitte verlinke gegebenenfalls eine geeignete archivierte Version: [1]. --ViewerBot 02:39, 29. Sep. 2007 (CEST)Beantworten

Entstehung des Regenbogens

Meiner Meinung ist die Intro nicht ganz richtig: Ein Regenbogen ist eine optische Erscheinung, deren Entstehung im Wesentlichen abhängig vom Beobachterstandpunkt ist, und erst dann "erscheint" (im Sinne eines Phänomens) wenn die hinter dem Beobachter stehende Sonne eine vor ihm befindliche Regenwolke bescheint und nicht alleine durch das alleinige im Text beschriebene Wechselspiel annähernd kugelförmiger Wassertropfen mit dem Sonnenlicht. Dies ist für die Entstehung eines Regenbogens zwar ursächlich, jedoch phänomenologisch betrachtet nicht ausreichend für die "Entstehung". Phänomenologisch richtig wäre:

  • ...Er entsteht wenn die hinter dem Beobachter stehende Sonne eine vor ihm befindliche Regenwolke bescheint, verursacht durch das Wechselspiel annähernd kugelförmiger Wassertropfen mit dem Sonnenlicht, welches...

--Andys 11:59, 19. Dez. 2007 (CET)Beantworten

Wieso steht da eigentlich, dass eine Regenwolke beschienen werden muss? Der Regenbogen entsteht doch im Regen beziehungsweise in den Wassertröpfchen, oder? --PaulT 19:38, 8. Jul. 2008 (CEST)Beantworten
Regenwolken und Regen(dazu zählt auch Nieselregen) unterscheiden sich weniger in der Tröpfchengröße, als vielmehr, dass das eine noch schwebt, während das andere schon fällt. Allerdings bezeichnet man als Regenwolke im weiteren Sinne auch Niederschlags-Wolken, und auch nur diese, und nicht etwa ein wenig Regen, besitzen genügend Wassertröpfchen um einen sichtbaren Regenbogen verursachen zu können. Entstehen allerdings tut der Regenbogen nur im Auge des Betrachters., d.h. unter einem bestimmten Beobachterstandpunkt. Gruß --Andys 20:19, 8. Jul. 2008 (CEST)Beantworten
Lieber Andys, ist mir schon klar, aber kann das dann nicht etwas anders formuliert werden? Beim Oma-Test würde ich sicher herausfinden, dass der Regenbogen nicht in der Wolke "zu sehen" ist, sondern im (zugegebenermaßen starken) Regen darunter. Dass man den dann als "Regenwolke im weiteren Sinne" oder bis auf den Boden herunter reichende "Niederschlags-Wolke" sehen soll, würde meiner Oma sicher nicht gefallen. Es steht auch im Widerspruch zu Deinen ersten Satz, in dem gerade die Tropfen (oder Eiskristalle) in den Wolken schweben. --PaulT 20:49, 8. Jul. 2008 (CEST)Beantworten
Nein den Regenbogen kann man gerade auch sehen, wenn es nicht regnet, die Wassertröpfchen die den Regenbogen dabei verursachen, befinden sich nicht nur im entfernten Regen, sondern vor allem auch in der Regenwolke. Die Regenbogenentfernung erstreckt sich an einem imaginären Punkt des Bogens vom allernächsten zum entfernsten Tropfen, in dem die Lichtbrechung unter den beschriebenen Bedingungen stattfindet. Der nächste Tropfen kann dabei wenige Zentimeter vor dem Auge oder mehrere Kilometer entfernt sein. Eigentlich handelt es sich also um keinen Bogen, sondern geometrisch betrachtet um einen Teil eines Kegelmantels, bei dem das Auge sich in der Kegelspitze befindet. Vom stereoskopischen (räumlichen) Sehen eines (menschlichen) Beobachters wird er deshalb als ein Objekt in unendlicher Entfernung interpretiert. Gruß --Andys 21:36, 8. Jul. 2008 (CEST)Beantworten
Ich versuche nochmal klar auszudrücken, was ich meine. Es geht mir ausschließlich um das Wort "Regenwolke" im zweiten Satz des Artikels, und dabei speziell nur um den Begriff Wolke, der mir hier unpassend erscheint. Kann man den nicht ersetzen durch "Wassertropfen", so dass dann der Satz z. B. "Er entsteht, wenn die hinter dem Beobachter stehende Sonne (eine große Anzahl) vor ihm befindliche(r) Wassertropfen bescheint, verursacht durch das Wechselspiel der Tropfen mit dem Sonnenlicht." lautet? In der englischen Wikipedia steht ja auch "... when the Sun shines onto droplets of moisture in the Earth's atmosphere". Du selbst definierst schließlich Wolke hier in der Diskussion auch jedesmal anders. Mit einem Rasensprenger kann man auch einen Regenbogen hervorrufen, und das was da raus kommt, würde ich beim besten Willen nicht als Regenwolke bezeichnen. --PaulT 17:13, 9. Jul. 2008 (CEST)Beantworten
"Ein große Anzahl von Wassertropfen" ist meiner Meinung eher verwirrend und auch nicht so zutreffend: eine große Anzahl reicht nicht aus, es muss schon eine sehr große Anzahl sein und was ist schon groß? Eine Regenwolke ist da sicherlich das ideale Maß! Um den Begriff "Regenwolke" zu erweitern: Vorschlag: "... vor ihm befindliche Regenwolke oder -wand bescheint..." --Andys 09:35, 11. Jul. 2008 (CEST)Beantworten
Den Zusatz Regenwand finde ich sehr gut. Allerdings verstehe ich den Unterschied zwischen großer und sehr großer Anzahl nicht, dann doch lieber "hinreichend große" Anzahl. --PaulT 11:31, 11. Jul. 2008 (CEST)Beantworten
hinreichend, groß oder sehr groß: alles zu unbestimmte Angaben! Man antwortet ja auch nicht auf die Frage wie viel Sterne eine durchschnittliche Galaxie besitzt mit: eine hinreichend große Anzahl!? Besser ist immer einen Vergleichsmaßstab anzugeben, wie bei dem Beispiel mit der Galaxie z.B. gleich der Anzahl der Schneeflocken einer Schneewolke/-gestöber, die über einer Großstadt hinwegzieht. Gruß --Andys 22:14, 11. Jul. 2008 (CEST)Beantworten

Optik des Regenbogens

Hallo, mir scheint, dass die Erklärung der Entstehung zu lang geraten ist. Mein Vorschlag wäre, die Struktur etwas zu überarbeiten:

1.1 Charakter des Sonnenlichts und Zusammenfassung der Regenbogenentstehung. Wozu soll diese Zusammenfassung gut sein? Für eine solche ist sie zu lang, kürzer kann man sie wohl kaum fassen, ohne dabei auf größere Teile verzichten zu müssen. Zudem wird das meiste ja unten wieder aufgegriffen, aber vieles ist schon durch sie vorweggenommen: wäre es nicht sinnvoller auf sie zu verzichten, und stattdessen die anderen Teile prägnanter zu machen? 1.2 Reflexionscharakteristik und Farbzerlegung am Wassertropfen -> wäre nicht der Titel Strahlengang im Regentropfen kürzer und verständlicher? 1.3 Hauptregenbogen Die ganze zeit redet man über den Hauptregenbogen, und plötzlich kommt jetzt auch noch ein Kapitel über den Hauptregenbogen, das genauso gut auch für andere Regenbögen gilt (Gegenpunkt, Öffnungswinkel uä gelten ja sowieso für alle Bögen) -> umbenennen in Beobachtung in der Natur oä?? 1.4 Nebenregenbogen Aha. Schon lange vermisst: wieso gibt es solch eine strikte Trennung zwischen Haupt- und Nebenregenbogen? Unterschiede sind letztlich nicht sehr gravierend, stattdessen aber doch haufenweise Gemeinsamkeiten vorhanden. Zudem könnte man ja auch mal die höheren Regenbögen erwähnen? Wie wärs zumindest mit dem dritten?

Zudem könnte man ja auch die paar komische Dinge ausmerzen, die da noch immer herumschwirren: in chronologischer reihenfolge:

"annähernd kugelförmiger Wassertropfen" : Ja sind die jetzt kugelförmig oder nicht, wenn nicht, darf man nicht sagen, der Regenbogen sei rund, dann bitteschön annähernd rund; ist der Regenbogen rund, sind auch die Tropfen rund.

"Bei hochstehender Sonne kommt es zu einer Mischung der Spektralfarben entsprechend ihrer natürlichen Intensität, woraus das weißliche Tageslicht resultiert. Bei tiefstehender Sonne ist die Mischfarbe rötlicher, was in der Rayleigh-Streuung begründet liegt und Effekte wie das Morgenrot bedingt." : Zu einer Mischung kommt es immer, nicht nur bei hochstehender Sonne! Die Farbe ist eine Folge der Rayleigh-Streuung, ganz recht, aber die Streuung beeinflusst nicht das Mischen, sie trennt eher...

"wird das parallele Sonnenlicht in einem Kegel zurückgeworfen, und zwar vorzugsweise in einem Winkel von rund 41°." : vorzugsweise klingt für mich persönlich seltsam, wenn man doch auf dem schönen Bild erkennt, dass das Licht ganz und gar nicht nur bei 41° ist, sondern über den ganzen weiten Bereich zerstreut. Ach sonst wird der geometrische Descartes'sche Anastz mit etwa Airy öä zusammengeschmissen.

"die eigentliche Form des Regenbogens aber durch das optische Verhalten der Lichtstrahlen im Regentropfen" : ich weiß nicht ob dies vielleicht auch gemeint ist, aber wäre nicht die Formulierung "durch die Form des Regentropfens" treffender?

Ganz zum Schluss ein winziger Fehler: "während das „normale“ unpolarisierte Licht zu über 5% absorbiert wird." : wohl eher 50%, oder?


Übrigens habe ich ein Programm, mit welchem man Strahlengänge in beliebigen Querschnitten anzeigt, ähnlich dem einen schon vorhandenen (das wo der halbe Tropfen ausgeleuchtet wird), bloß kann man auch weitere Ordnungen anzeigen, und wie erwähnt bei Bedarf auch den Querschnitt verziehen uä.

Erbitte Gegenstimmen oder weitere Vorschläge. Gruß, W.bars 12:28, 18. Mär. 2008 (CET)Beantworten

Artikel des Tages

Hallo, der lesenswerte Artikel wurde soeben von mir als Artikel des Tages für den 08.07.2008 vorgeschlagen. Das Datum ist flexibel. Eine Diskussion darüber findet hier statt. --Vux 14:39, 26. Jun. 2008 (CEST)Beantworten

Regenbogen vs. Zerlegung am Prisma

Meines Erachtens sollte in dem Artikel noch mehr darauf eingegangen werden, dass bei einem Regenbogen nicht dasselbe passiert wie bei einem Prisma: Ein Prisma zerlegt weißes Licht in seine Bestandteile.

Haupt- (links) und Nebenregenbogen (rechts). Der Himmel im Inneren des Hauptregenbogens erscheint stets heller als außerhalb davon.

Der Regenbogen hingegen ist der farbige Rand einer Leuchterscheinung des ganzen Himmels, unterhalb des Hauptregenbogens werden alle Farben der Lichtes (natürlich nur zum Teil) reflektiert, innerhalb des Hauptregenbogens dann nur noch ein Teil der Farben, oberhalb des Hauptregenbogens keine Farbe des Lichtes mehr. Das erklärt Alexanders dunkles Band. Mit den Nebenregenbögen ist das immer abwechselnd umgekehrt (wie ja auch deren Farben), wobei weitere nach dem ersten Nebenregenbogen nur noch von theoretischem Interesse sind. Sipalius 10:01, 8. Jul. 2008 (CEST)Beantworten

Deswegen wurde auch nur die Ähnlichkeit zum Prisma erwähnt, die Ursache für die Entstehung der Farben ist bei beiden die Dispersion. Des Weiteren ist ein Regenbogen kein "farbiger Rand einer Erscheinung des ganzen Himmels", vielmehr hängt dessen leuchtende Erscheinung wesentlich vom Beobachtungsstandpunkt ab. Die dunkle Zone entsteht bekanntlich durch eine teilweise Reflexion der Sonnenstrahlen und deren unterschiedlichem Strahlengang beim Haupt- und Nebenregenbogen, die in der dunklen Zone sich nicht überlagern können: Hat nichts mit einem Prisma zu tun (soweit stimme ich zu), das wurde aber auch nicht behauptet oder stillschweigend suggeriert. --Andys 22:31, 8. Jul. 2008 (CEST)Beantworten

Phänomen

Das scheint das Lieblingswort in der Wikipedia zu sein. Weil es so "gewählt" klingt? Ein Regenbogen entsteht durch Lichtbrechung. Ein solcher Satz ist natürlich zu einfach. Besser ist natürlich die Ist-wenn-Konstruktion.-- Kölscher Pitter 11:53, 8. Jul. 2008 (CEST)Beantworten

Wurde bereits oben diskutiert, insofern deplaziert. --Andys 13:28, 8. Jul. 2008 (CEST)Beantworten
Du hast mich falsch verstanden. Es geht mir um die "hochgeschraubte" Sprache.-- Kölscher Pitter 16:29, 9. Jul. 2008 (CEST)Beantworten

Flugzeugkondensstreifenregenbogen

Ich hab in Kondensstreifen auch schon Regenbögen gesehen. Ist das irgenwie relvant? Könnte vielleicht mit Chemtrails zu tun haben ( ein Mitleser Juli 2008 )

Verheißung des Noah

Im Artikel Regenbogenfahne steht "diente in vielen Kulturen weltweit als Zeichen der Toleranz, Vielfältigkeit, der Hoffnung und Sehnsucht. Diese Bedeutung geht auf den Regenbogen als Symbol biblischer Verheißung zurück (vgl. Noach)". Das fehlt hier noch, ich fände es wichtig. Bei Noah ist der Regenbogen übrigens gar nicht berücksichtigt. Wer kann das hier in den Artikel einarbeiten oder diskutieren? Danke, --77.4.122.114 13:06, 8. Sep. 2008 (CEST)Beantworten

RB in Kondensstreifen

Hallo,

es wäre sicherlich interessant, sich einmal ein Bild einer solchen Erscheinung anzuschauen: soweit noch nicht photographiert, unbedingt machen! Auch nach Möglichkeit die Position der Sonne festhalten (falls sie im Rücken ist, durch einen Schatten)! --W.bars 12:28, 18. Mär. 2008 (CET)Beantworten

Hinweis auf ein paar Mängel, gelesen bis und mit 1.1

mit vielen Spektralfarben in einem charakteristischen Farbverlauf: Eine Aussage, die den Text anreichert, aber eigentlich nichts sagt. Was ist viel? Was ist charakteristisch?
das Wechselspiel: Warum prosaisch, warum nicht physikalisch (Wechselwirkung)? Warum überhaupt Wechsel? Die kausale Kette geht nur vorwärts.
wird das Licht wellenlängenabhängig gebrochen: Warum nicht direkter formuliert? Zugegeben, der Artikel Dispersion sollte hierfür verbessert werden.
unter günstigen Bedingungen: Sagt nichts, s.o.
enthält im sichtbaren Bereich seines Spektrums viele Spektralfarben: Was ist viel, s.o.?
in der Rayleigh-Streuung begründet: Ziemliche Suche im verlinkten Artikel ist nötig.
weißes Licht ähnlich einem gläsernen Prisma ... in die einzelnen Spektralfarben aufzuspalten: Der Bezug aufs Prisma ist zu wenig sorgfältig. gläsern ist nicht das Primäre (Prismen auch aus Kunststoffen, Wasser u.a.), primär ist die brechende Fläche. Auch die "konstante" Ablenkung durchs Prisma ist beim Regenbogen nicht das Wesentliche.
in Abhängigkeit von ihrem Auftreffpunkt auf den Tropfen unterschiedlich stark gebrochen: genauer: Es geht nicht um die Dispersion wie bisher (im Bild mit monochromatischem Licht gezeigt).
vorzugsweise und bevorzugt: Klingt nach Vorlieben o.ä.. Es gibt Gründe für die Häufung des Lichtaustritts in einer bestimmten Richtung.
die eigentliche Form des Regenbogens: Es ist unklar, was hier mit Form gemeint ist.
Analemma 21:48, 21. Mär. 2009 (CET)Beantworten

Mängel-Einträge

bis Absatz 2 (Vorkommen)

Ich habe die oben angefangene Mängel-Feststellung bis einschließlich Absatz 2 erweitert und in eine Teil-Kopie des momentanen Artikels eingetragen.

Ein Regenbogen ist ein Phänomen der atmosphärischen Optik, das als kreisbogenförmiges Lichtband mit vielen Spektralfarben in einem charakteristischen Farbverlauf wahrgenommen wird.

mit vielen Spektralfarben in einem charakteristischen Farbverlauf: 
Eine Aussage, die den Text anreichert, aber eigentlich nichts sagt. 
Was ist viel? Was ist charakteristisch?

Er entsteht, wenn die hinter dem Beobachter stehende Sonne eine vor ihm befindliche Regenwand oder -wolke bescheint, verursacht durch das Wechselspiel

das Wechselspiel: Warum prosaisch, warum nicht physikalisch (Wechselwirkung)? 
Warum überhaupt Wechsel? Die kausale Kette geht nur vorwärts.

annähernd kugelförmiger Wassertropfen mit dem Sonnenlicht. Bei Ein- und Austritt aus dem Tropfen wird das Licht wellenlängenabhängig gebrochen

wird das Licht wellenlängenabhängig gebrochen: 
Warum nicht direkter formuliert? Zugegeben, der Artikel Dispersion 
sollte hierfür verbessert werden.

und an der rückwärtigen inneren Oberfläche richtungsabhängig reflektiert. Eine extrem seltene Variante des Regenbogens ist der Mondregenbogen, der beim Zusammenspiel von Wassertröpfchen mit Mondlicht unter günstigen Bedingungen

unter günstigen Bedingungen: Sagt nichts, s.o.

zu sehen ist. Beide Varianten zählen zu den sogenannten Photometeoren.

Optik des Regenbogens

Charakter des Sonnenlichts und Zusammenfassung der Regenbogenentstehung

Farbzerlegung des Sonnenlichts durch ein Prisma (qualitativ)

Das Sonnenlicht enthält im sichtbaren Bereich seines Spektrums viele Spektralfarben.

enthält im sichtbaren Bereich seines Spektrums viele Spektralfarben: Was ist viel, s.o.?

Es handelt sich dabei um elektromagnetische Strahlung unterschiedlicher Wellenlängen. Bei hochstehender Sonne kommt es zu einer Mischung der Spektralfarben entsprechend ihrer natürlichen Intensität, woraus das weißliche Tageslicht resultiert. Bei tiefstehender Sonne ist die Mischfarbe rötlicher, was in der Rayleigh-Streuung

in der Rayleigh-Streuung begründet: Ziemliche Suche im verlinkten Artikel ist nötig.

begründet liegt und Effekte wie das Morgenrot bedingt.

Die Ursache für die Entstehung der Farben des Regenbogens ist die Dispersion in einem Wassertropfen, also dessen Fähigkeit weißes Licht ähnlich einem gläsernen Prisma

weißes Licht ähnlich einem gläsernen Prisma ... in die einzelnen Spektralfarben aufzuspalten: 
Der Bezug aufs Prisma ist zu wenig sorgfältig. gläsern ist nicht das Primäre (Prismen auch aus  
Kunststoffen, Wasser u.a.), primär ist die brechende Fläche. Auch die "konstante" Ablenkung durchs 
Prisma ist beim Regenbogen nicht das Wesentliche.

(siehe rechts) in die einzelnen Spektralfarben aufzuspalten.

Wenn während oder kurz nach einem Regenereignis Sonnenlicht auf eine Wand von Regentropfen fällt, wird das Licht in ihnen gebrochen und reflektiert. Da jeder Lichtstrahl auf eine andere Stelle des runden Regentropfens fällt, wird das parallele Sonnenlicht in einem Kegel zurückgeworfen, und zwar vorzugsweise in einem Winkel von rund 41°. Diese 41° sind also der bevorzugte Winkel zwischen dem Licht,

vorzugsweise und bevorzugt: Klingt nach Vorlieben o.ä.. 
Es gibt Gründe für die Häufung des Lichtaustritts in einer bestimmten Richtung.

das auf den Tropfen trifft, und dem Licht, das den Tropfen verlässt. Da das Sonnenlicht, wie oben dargelegt, aus vielen Spektralfarben zusammengesetzt ist, die im Regentropfen auch unterschiedlich gebrochen werden, ergibt sich für diese jeweils ein ganz bestimmter Winkel, der etwas von den 41° abweicht. Das rote Licht weist einen bevorzugten Winkel von etwa 42° auf, das blaue Licht eher von 40°. Blickt der Beobachter nun zur Regenwand, so erscheinen ihm alle Tropfen farbig, die das von der Sonne kommende Licht genau auf sein Auge umlenken. Der Regenbogen wird also nur sichtbar, wenn der Betrachter mit dem Rücken zur Sonne auf die Regenwand blickt, denn nur dann kann man in Richtung dieses Winkels schauen. Die Breite des Regenbogens entsteht dabei durch die Auffächerung der Farben in die unterschiedlichen Winkel, die eigentliche Form des Regenbogens

die eigentliche Form des Regenbogens: Es ist unklar, was hier mit Form gemeint ist.

aber durch das optische Verhalten der Lichtstrahlen im Regentropfen. Unser Auge kann nur bestimmte Frequenzen des Lichts wahrnehmen (380 bis 780 Nanometer (nm) Wellenlänge). Auch oberhalb der roten Farbe (z. B. Infrarot) und unterhalb der blauen Farbe (z. B. Ultraviolett) des Regenbogens sind "Farben", die das menschliche Auge jedoch nicht wahrnehmen kann.

Reflexionscharakteristik und Farbzerlegung am Wassertropfen

Wo bleibt die Brechung?
Strahlengang im Regentropfen bei einem Lichtstrahl
Strahlengang für mehrere, parallele Lichtstrahlen

Wassertröpfchen sind in guter Näherung transparente kleine Kugeln. Die Abbildung rechts verdeutlicht, was mit einem Lichtstrahl geschieht, wenn er auf diese Tropfen trifft.

Das Bild zeigt sowohl Brechung als auch Dispersion. Von Dispersion ist aber erst 2 Absätze später 
die Rede.
Das Bild enthält schon den Winkel 42°: Von maximaler Ablenkung ist erst 1 Absatz später die Rede.
Warum 42°, nicht 41° oder 40°?
Bei Ein- und Austritt wird er gemäß dem Brechungsgesetz abgelenkt und an der rückwärtigen inneren Oberfläche reflektiert. Ein Teil des Lichtes wird direkt von der dem einfallenden Licht zugewandten Oberfläche reflektiert, 
von der dem einfallenden Licht zugewandten Oberfläche reflektiert,  → an der Eintrittsfläche

ein anderer Teil tritt durch den Tropfen hindurch, da die innere Oberfläche keine Totalreflexion aufweist.

Warum nicht?

Beides reduziert die Intensität des Regenbogens, hat jedoch davon abgesehen keinen weiteren Einfluss auf dessen Entstehung und soll daher hier vernachlässigt werden.

Wesentlich ist, dass die Tropfenoberfläche gekrümmt ist, denn dadurch werden die einzelnen Lichtstrahlen in Abhängigkeit von ihrem Auftreffpunkt auf den Tropfen unterschiedlich stark gebrochen, was in der Abbildung rechts unten dargestellt ist.

Betonen, dass es noch nicht um Regenbogen-Farben geht: monochromatisches Licht in der Abbildung.
Die Abbildung ist eine magere Kopie aus der englischen Wikipedia 
(dort wenigstens Ein-und Austritt gekennzeichnet).
Weder in der Legende noch im folgenden Text ist gesagt, dass nur die obere Hälfte des 
eintretenden Lichtes dargestellt ist. Was geschieht mit der anderen Hälfte?

Eine geometrische Berechnung ergibt,

Rechnung fehlt, aber mit Hilfe des Bildes erklärbar.

dass die reflektierten Strahlen von einem kugeligen Wassertropfen unabhängig vom Tropfendurchmesser maximal unter einem bestimmten Grenzwinkel von annähernd 42 Grad zurückgeworfen werden.

Falsch: Diesen Winkel haben erst die ausgetretenen Strahlen (nicht die reflektierten).

Da größere Ablenkwinkel bei einfacher Reflexion nicht auftreten, häufen sich dort die Beiträge verschiedener Auftreffpunkte und die Intensität des reflektierten Lichtes ist deshalb unter dem Maximalwinkel besonders hoch. Dieser Vorzugswinkel wird als Regenbogenwinkel bezeichnet und ist für die Entstehung des eigentlichen Bogens verantwortlich.

Vorzugswinkel ... für die Entstehung des eigentlichen Bogens verantwortlich.
Dafür ist mehr verantwortlich. 

Da fallende Wassertropfen annähernd kugelförmig sind, treten diese Vorzugsrichtungen rotationssymmetrisch um die Richtung des parallel einfallenden Sonnenlichts auf. Es ergibt sich dadurch eine kegelförmige Abstrahlung.

Dieser Kegel muß vom Kegel, in dessem Spitze sich der Beobachrter befindet unterschieden werden.

Der Maximalwinkel ist wegen der bereits oben erwähnten Dispersion von der Wellenlänge des auftreffenden Lichtes abhängig, jede Wellenlänge und somit Farbe hat also ihren eigenen Maximalwinkel. Dieser zeigt folglich eine Verteilung von Rot bei etwa 42° bis Blau bei ungefähr 40°. Es kommt also zu einer Auffächerung der einzelnen Wellenlängen beim Durchtritt des Sonnenlichts durch den Wassertropfen. Auch ohne diese Auffächerung würde aufgrund des Maximums der Lichtintensität um den dann einheitlichen Maximalwinkel herum ein schmaler Regenbogen entstehen, der jedoch weiß erscheinen würde.

Ein weißer Regenbogen ist widersinnig

Der Teil des Sonnenlichts, der durch den Regentropfen einfach hindurchdringt oder bereits an dessen Oberfläche reflektiert, anstatt gebrochen wird, weist keinen Maximalwinkel auf und erzeugt daher auch keinen Regenbogen.

weist keinen Maximalwinkel auf Eine Erklärung, die unpassend ist, aber sophisticated klingt. 
Der hinten raus gehende Teil ist verloren, der nicht eintretende wird zurück gestreut (konvexe Fläche).

Hauptregenbogen

Dieses Wort erscheint zu spät, erst im 3. Absatz. Vorher wird  z.T. eben Gesagtes schon wiederholt.
Winkelbeziehungen zwischen Beobachter, Tropfen und Sonne
Beobachtung von Haupt- (unten) und Nebenregenbogen bei mittlerem Sonnenstand
Haupt- (links) und Nebenregenbogen (rechts). Der Himmel im Inneren des Hauptregenbogens erscheint stets heller als außerhalb davon.
Steht die Sonne höher als 42°, ist der Hauptregenbogen nur von einem erhöhten Standort aus sichtbar und steht unterhalb des Horizonts. Hier ein Regenbogen am Altenbergturm nach Schauerdurchzug

Um den Regenbogen zu sehen, muss der Beobachter auf einer möglichst freien Ebene mit dem Rücken zur tiefstehenden Sonne stehen und auf eine vom Sonnenlicht angestrahlte Regenwand blicken. In diesem Fall verlaufen alle Sonnenstrahlen annähernd parallel zur Erdoberfläche und zur Blickrichtung des Beobachters. Sie treffen in breiter Front auf die Vielzahl kleiner, im Blickfeld vor dem Beobachter annähernd gleichmäßig verteilter Wassertröpfchen.

Das Licht trifft also zuerst auf diese Regentropfen und folgt dabei dem im letzten Abschnitt beschriebenen Strahlengang. Der Maximalwinkel mit dem das Licht aus jedem Tropfen bei einer bestimmten Wellenlänge und damit Farbe dann austritt, also der Winkel zwischen dem Tropfen und dem ursprünglichen Sonnenstrahl, beträgt wie dargelegt je nach Wellenlänge und damit Farbe 40 bis 42 Grad. Der Beobachter nimmt das Licht nur bei diesem Winkel als intensiv farbig wahr, insofern es direkt auf sein Auge trifft.


Die genaue Position des Regenbogens kann man sich nun über eine verlängerte Linie herleiten, die man sich zwischen dem Kopf des Beobachters und dessen von der Sonne geworfenen Schatten vorstellen muss. Diese Linie ist identisch zur verlängerten Verbindung zwischen Beobachter und Sonne und zeigt in Richtung des Sonnengegenpunktes. Dieser bildet das Zentrum des Regenbogens. Da der Winkel zwischen dieser Linie und dem Regentropfen ein Nachbarwinkel

Nachbarwinkel besser verlinken (mit # etc.)

des Winkels zwischen dem ursprünglichen Sonnenstrahl und dem Austrittsstrahl des Regentropfens ist, sind beide identisch und somit gleich 40 bis 42 Grad. Folglich blickt der Beobachter genau dann in das vom Tropfen im Maximalwinkel abgestrahlte Licht, wenn er den Schatten seines Kopfes fixiert und dann um 40 bis 42 Grad – den so genannten Öffnungswinkel

Falsch: Öffnungswinkel ist in der Geräteoptik eng definiert und hier nicht passend.

– in Richtung des Regentropfens nach oben blickt. Hier erscheint für ihn dann, solange er die Sonne genau im Rücken hat, der Scheitelpunkt

Ebenfalls unpassender Link. Viel besser und sicherer ist die umgangssprachliche Bedeutung 
dieses Begriffs: hier der oberste Punkt.

des so genannten Hauptregenbogens. Dieser stellt den eigentlichen Regenbogen dar und tritt im Vergleich zu anderen Regenbogenphänomenen

Welche sind das?

am deutlichsten hervor. Er erstreckt sich dabei halbkreisförmig

Das ist nicht die allgemeine Form.

um den Sonnengegenpunkt, wobei der Winkel immer gleich bleibt.

Wo und ob

Wieso ob? Fordert nur eine längere Erklärung.

ein Regenbogen dabei letztlich erscheint, ist eine Frage der relativen Position zwischen Beobachter, Sonne und Regentropfen. Wie gezeigt bilden dabei Sonne, Beobachter und das gedachte Zentrum des Regenbogens – der Sonnengegenpunkt – immer eine Linie, so dass jede Bewegung von Sonne oder Beobachter auch eine Veränderung des Regenbogens zur Folge hat. Jeder Beobachter sieht also einen anderen,

Wie unterscheiden sie sich?

eigenen Regenbogen. Dabei reflektiert und bricht nur eine kleine Minderheit richtig positionierter Regentropfen das Licht so, dass der jeweilige Maximalwinkel auf das Auge des Beobachters gerichtet ist. Fehlen die Regentropfen dabei an einer Stelle, zeigt sich dort auch kein Regenbogen.

Es ist unklar, ob das die Antwort auf die vorige Frage ist, oder ob etwas Generelles gesagt werden soll.

In den meisten Fällen nimmt man daher nur einen Ausschnitt des eigentlich möglichen Bogens wahr.

Steht die Sonne genau am Horizont, so gilt dies auch für das Zentrum des Regenbogens, wodurch dieser bei ausreichender Tropfenzahl einen vollständigen Halbkreis einnimmt. Dieser beträgt für den Hauptregenbogen 84 Grad des Sehfeldes,

Das Sehfeld hat nicht nur horizontale Ausdehnung.

also das doppelte des größten Maximalwinkels. Damit erreicht er seine größtmögliche Breite. Er ist umso schmaler und flacher, je höher die Sonne steht und je weiter damit der Sonnengegenpunkt unter den Horizont absinkt. Die Winkel zwischen den Sonnenstrahlen und den vom Beobachter wahrgenommenen farbigen Strahlen bleiben dabei immer unverändert. Falls die Sonne höher als 42° steht, rutscht auch der Scheitelpunkt des Bogens unter den Horizont. In Mitteleuropa erreicht die Sonne bei ihrem mittäglichen Höchststand im Sommer bis zu 60°, weshalb man dann keinen Regenbogen beobachten kann. Ein solches Szenario ist jedoch aus meteorologischen Gründen eher selten, da die Sonne dann meist von den Regenwolken verdeckt wird. Im Winter ist der Höchststand aber durchweg unter 42° und somit sind Regenbögen dann zu jeder Tageszeit zwischen Sonnenauf- und Sonnenuntergang möglich.

Der Widerspruch, dass laut der Skizze „Strahlengang im Regentropfen“ eigentlich blau die oberste Farbe im Hauptbogen sein müsste, ist nur scheinbar – da Blau unter einem kleineren Winkel reflektiert wird, sind die Tropfen, die die blauen Anteile reflektieren, der Erde näher; überspitzt formuliert, reflektiert ein fallender Regentropfen alle Farben des Sonnenlichts, von rot nach blau gehend, während er durch den Winkelbereich von 42° bis 40° fällt.

Nebenregenbogen

Zweimalige Reflexion

Bisher wurden Strahlen betrachtet, die genau einmal im Inneren der Tröpfchen reflektiert werden. Der Nebenregenbogen dagegen wird von zweifach reflektierten Strahlen gebildet.

Im allgemeinen Fall mehr als zweimalige Reflektion.

Er ist deutlich lichtschwächer als der Hauptregenbogen, da bei jeder Reflexion ein Teil des Sonnenlichtes unreflektiert den Regentropfen verlässt. Außerdem verteilt sich das verbleibende Licht auf einen größeren Winkelbereich, da der Nebenbogen breiter

Wieso breiter?

als der Hauptbogen ist und sich die Farben zudem stärker überlagern.

Warum und wie überlagern?

Er kann daher nur bei sehr guten Sichtverhältnissen

Was sind gute Verhältnisse?

beobachtet werden und kommt nicht so häufig wie der Hauptregenbogen vor. Die rechnerische Auswertung

Quantitative Ergebnisse folgen nicht zwangsläufig aus Rechnungen.

der Maximumbedingung ergibt einen Winkel von circa 50 Grad für rotes und 53 Grad für blaues Licht. Der aus einem Regenbogen austretende Lichtstrahl reflektiert beim Nebenregenbogen gegen den Uhrzeigersinn, statt mit dem Uhrzeigersinn

Ob Uhrzeigersinn oder das Gegenteil ist eine Standpunkt-Frage. 
Linkshänder zeichnen möglicherweise die hier vorkommenden  Abbildungen spiegelbildlich.

wie beim Hauptregenbogen. Aufgrund der zusätzlichen Reflexion kehrt sich außerdem der Farbverlauf im Vergleich zum Hauptregenbogen um. Die nebenstehende Grafik veranschaulicht den Strahlverlauf in der Nähe des Intensitätsmaximums.

in der Nähe des Intensitätsmaximums Bisher war von maximaler Ablenkung die Rede.

Lichtstrahlen, die mehr als zweimal reflektiert werden, sind bereits so schwach, dass sie nur in den seltensten Fällen noch weitere sichtbare Regenbögen erzeugen.

Haupt- und leichter Nebenregenbogen in der Schweiz

Im oberen Bild mit einem Haupt- und Nebenregenbogen fällt auf, dass der Himmel im Innern des Hauptbogens deutlich heller als außerhalb erscheint und insbesondere der Bereich zwischen Haupt- und Nebenregenbogen deutlich dunkler als seine Umgebung ist. Dieser Helligkeitskontrast entsteht, weil bei Winkeln unterhalb des Maximalwinkels beim Hauptregenbogen sich die Farben überlagern und so ein weißes Licht erzeugen. Da beim Nebenregenbogen der Farbverlauf umgekehrt ist, zeigt sich das etwas dunklere weiße Licht bei Winkeln oberhalb des Maximalwinkels des Nebenregenbogens. Dadurch entsteht zwischen diesen beiden Regenbogen ein dunkles Band, welches zu Ehren seines Entdeckers Alexander von Aphrodisias als Alexanders dunkles Band bezeichnet wird.

Geschlossener Regenbogen

Regenbogen im Yellowstone-Nationalpark
Regenbogen oder Glorie von Flugzeug aus gesehen auf waagrechter Wolkenfläche, rechts mit überlagertem Kreis
Ein Nebelbogen, eine Glorie und ein Brockengespenst auf der Schattenseite der Golden Gate in San Francisco.

Um einen zum Kreis geschlossenen Hauptregenbogen sehen zu können, muss das Reflexionsmedium seiner Ausdehnung, d.h. über 2 mal 42°, komplett in das Blickfeld des Beobachters passen. Dazu ist es notwendig, dass beim Blick nach unten, also relativ zur Waagerechten, ebenfalls freie Sicht auf die von der Sonne angestrahlten Reflexionselemente herrscht, denn nur über Regionen in denen das Medium ist kann sich der Regenbogen weiter fortsetzen.

Diese Möglichkeit besteht im Allgemeinen nur von einem Flugzeug oder einem Ballon aus. Künstlich kann dies zum Beispiel mit einem Wasserschlauch mit Düse oder einer Sprühflasche realisiert werden, wenn die Wasserfläche

Wasserfläche → Wassertropfen 

sehr dicht vor dem Beobachter entsteht. Eine Lücke im unteren Bereich durch den Schatten des Beobachters bleibt jedoch im Allgemeinen unvermeidlich.

Bei geeigneten Witterungsbedingungen kann man in der Tat vor allem während der Start- oder Landephase, d.h. in Bodennähe, einen vollständigen Regenbogenkreis beobachten. Ein denkbarer Beobachtungsort wäre auch ein sehr hoher Turm, da so die angestrahlte Regenwand nah genug wäre. Berge hingegen kommen kaum in Frage, da diese immer zum Teil zwischen Sonne und Regenwand stünden, wodurch kein ganzer Kreis zustande kommen kann.

Es sei nochmals ausdrücklich auf die Größe des Kreises verwiesen. Insbesondere ist dieses Phänomen nicht mit den viel kleineren Glorien zu verwechseln, die zwar dem Phänomen und den benötigten Umgebungsbedingungen nach verwandt sind jedoch einer anderen Theorie

Im Link gibt es keine andere Theorie.

für ihr Zustandekommen zugeordnet werden.

Eine gänzlich andere Möglichkeit zur Sichtung eines Regenbogenkreises eröffnet sich, wenn man sich an oder auf einem großen, ruhigen Gewässer befindet. Bei diesigem Wetter lässt sich dann unter günstigen Umständen

Was sind bei diesige Wetter günstige Umstände? 

ein geschlossener Regenbogen beobachten. Dieser wird von der in der Wasserfläche gespiegelten Sonne komplettiert

Halbkreis zu Halbkreis??

oder erzeugt und hat deshalb das Spiegelbild des Sonnengegenpunktes als Zentrum. Der über dem Beobachter befindliche Dunst muss bereits Regentropfen enthalten

Wieso bereits? Ohne Tropfen entsteht schon nicht der zu komplettierende Bogen.

und von dem die Sonne spiegelnden See her beleuchtet werden. Steht die Sonne beispielsweise 50 Grad hoch im Süden, so befindet sich das Zentrum dieses Regenbogenkreises 50 Grad hoch im Norden,

 Sehen wir jetzt einen hängenden Bogen?

denn der Sonnengegenpunkt steht 50 Grad unter dem Horizont, sein Spiegelbild also 50 Grad darüber.

Insbesondere muss die Sonne für dieses Szenario höher als 42 Grad am Himmel stehen. Tut sie dies nicht, bleibt zumindest die Chance, das nicht minder seltene Schauspiel zweier gleichzeitig auftretender Hauptregenbögen mit verschiedenen Zentren zu erleben.

Was sahen wir eigentlich bei höherer Sonne?

Farbverlauf und Polarisation

Der Inhalt des folgenden Absatz steht in anderen, einschlägigen Artikeln.

Die einzelnen Farben entstehen durch die Brechung des Lichtes. Beim Hauptregenbogen verlaufen die Farben von außen nach innen von Rot über Orange, Gelb, Grün und Blau zu Violett. Beim Nebenregenbogen ist die Reihenfolge aufgrund der zusätzlichen Reflexion umgekehrt. Dieser Farbverlauf ist dabei kontinuierlich, das heißt ein Regenbogen hat keine feste Menge diskreter Farben, die sprunghaft ineinander übergehen. Die Anzahl der Farben in einem Regenbogen ist lediglich durch die Farbwahrnehmung begrenzt, also die Fähigkeit verschiedene Wellenlängen auch als unterschiedliche Farben wahrzunehmen. Da auch die Regenbögen selbst hier teilweise große Unterschiede besitzen, ist die ihnen zugerechnete Farbabfolge eher eine Konvention als eine tatsächlich beobachtbare Eigenschaft. So lassen sich zum Beispiel sehr kurz vor oder auch noch sehr kurz nach Sonnenaufgang Regenbögen beobachten, die beinahe ausschließlich rotgefärbt sind. Ein Foto eines solchen nahezu idealen Halbkreisbogens, genauer: einer halbkreisförmigen Scheibe, mit erläuternder Theorie ist in der angegeben Quelle veröffentlicht.

Welche Quelle?

Das von einem Regenbogen reflektierte Licht hat einen sehr hohen Polarisationsgrad.

Polarisationsgrad Was ist das?

Mit Hilfe eines Polarisators kann ein Regenbogen, je nach Drehung des Polarisationsfilters, vollständig für das Auge bzw. die Kamera gelöscht oder aber im Kontrast deutlich gesteigert werden. Die Kontrasterhöhung lässt sich dadurch erklären, dass das polarisierte Licht des Regenbogens den Filter nahezu vollständig passieren kann, während das „normale“ unpolarisierte Licht zu über 50% absorbiert wird.

Fotografien von Regenbögen zeigen zu einem gewissen Prozentsatz ein stark unterschiedliches Licht-Verhältnis zwischen dem Innenbereich und dem Aussenbereich des Hauptbogens. Während der Innenbereich oftmals eher hell leuchtend und teils leicht dunstig verschleiert wirkt präsentiert sich der Aussenbereich dagegen dunkler, klarer und mit gesättigteren Farben. In wie weit hier die nur mit Foto-Apparat und Filter oder speziellen Brillen-Gläsern sichtbare Polarisation eine Rolle spielt oder ein generelles Phänomen des massgeblichen Brechungs- und Reflexionsvorgangs im Kontext mit dem einfallenden Licht zu Grunde liegt muss heute an dieser Stelle offen bleiben.

Warum diese offen bleibende Bemerkung? Es gab doch bereits eine Erklärung für die 
unterschiedliche Helligkeit der beiden Bereiche.

Sonderformen, Einfluss der Tröpfchengröße und Interferenzeffekte

Hauptbogen bei guten Beobachtungsbedingungen. Mehrere zusätzliche farbige Bögen sind erkennbar.
Hauptspektrum gut zu erkennen und ein kleines Nebenspektrum darunter (Kontrast künstlich erhöht)
Nebelbogen

Bei guten Beobachtungsbedingungen

guten Beobachtungsbedingungen Wie sind die, genauer?

sind innerhalb des Hauptbogens ein oder mehrere zusätzliche oder überzählige farbige Bögen erkennbar, die mit stetig abnehmendem Kontrast die Farbreihenfolge des Hauptbogens wiederholen. Diese zusätzlichen Farbbänder erklärte Thomas Young 1804 mit der Interferenz: Für Beobachtungswinkel kleiner als der Maximalwinkel gibt es für einen Strahl einer bestimmten Farbe verschiedene, unterschiedlich lange Strahlengänge durch den Tropfen, die sich im Auge des Betrachters überlagern. Beträgt der von der Tröpfchengröße abhängige Gangunterschied entlang dieser Wege die Hälfte der Wellenlänge, oder ein ungeradzahliges Vielfaches davon, so ist die Interferenz zwischen ihnen destruktiv und ihre Amplituden löschen sich gegenseitig aus. Dazwischen liegen jedoch Winkel, bei denen Gangunterschiede auftreten, die ganzzahligen Vielfachen der Wellenlänge entsprechen: Hier kommt es zur konstruktiven Interferenz und dadurch zu einem Nebenmaximum der Intensität.

Die Erklärung diese schwierigeren Physik (nach Airy) gelingt besser mit einer Abbildung.

Abhängig von den Beobachtungsbedingungen

Wie abhängig?

kann die Reinheit der Farben sehr unterschiedlich ausfallen, auch sind häufig die Enden des Bogens besonders hell. Diese Effekte werden ebenfalls durch Interferenz verursacht, die sowohl von der Tröpfchengröße als auch von Abweichungen von der Kugelform abhängt.

Generell lässt sich feststellen, dass große Tropfen mit Durchmessern von mehreren Millimetern besonders helle Regenbögen mit wohldefinierten Farben erzeugen. Bei einer Tröpfchengröße unter 1,5 mm wird zunächst die Rotfärbung immer schwächer. Sehr kleine Tropfen, wie beispielsweise in Nebelschwaden, wo der Durchmesser oft nur etwa ein Hundertstel Millimeter beträgt, liefern nur noch verschmierte Farben. Bei Tröpfchengrößen unter 50 Mikrometern überlagern sich die Farben derart, dass der Regenbogen nur noch weiß erscheint. Diese spezielle Form wird als Nebelbogen bezeichnet.

Eine weitere Sonderform bilden die Taubögen,

Was ist das?

die viel schwerer und seltener zu beobachten sind als ein gewöhnlicher Regenbogen.

Mondregenbogen heißt ein Regenbogen bei Nacht, der das Mondlicht als Grundlage hat. Er ist ebenfalls wesentlich seltener

Wieso seltener?

als ein gewöhnlicher Regenbogen und erscheint dem Beobachter aufgrund seiner Lichtschwäche weiß, weil das menschliche Auge beim Nachtsehen keine Farben wahrnimmt. Bei guten Bedingungen

guten Bedingungen Wann sind sie gut?

oder auf fotografischen Aufnahmen kann man aber auch hier die Spektralfarben beobachten.

Besondere Erscheinungsformen bilden die sehr seltenen Gespaltenen Regenbögen und Spiegelbögen. Wenn das Sonnenlicht an einer Wasserfläche gespiegelt wird, bevor es auf die Regentropfen trifft, kann ein zweiter Bogen entstehen, der am Horizont mit dem Hauptbogen zusammentrifft, weiter oben aber wie ein zweiter, den Hauptbogen kreuzender Bogen erscheint.[1][2] Darüber hinaus gibt es Beobachtungen von seitlich versetzten, sich überschneidenden Regenbögen, deren Entstehung bislang unklar ist.[3]

Der seltene Eisbogen [4] entsteht in kalten Gegenden, wo er von Eispartikeln statt Wasser gebildet wird.

Scheinbare Entfernung des Regenbogens

Der Regenbogen wird von beiden Augen des Beobachters stets unter demselben Beobachtungswinkel (dem Regenbogenwinkel) gesehen. Vom stereoskopischen (räumlichen) Sehen wird er deshalb als ein Objekt in unendlicher Entfernung interpretiert. Diese Täuschung wirkt insbesondere dann irritierend, wenn sich „hinter“ einem „nahen“ Regenbogen (beispielsweise im Sprühnebel eines Gartenschlauches) noch Objekte im Gesichtsfeld befinden, deren Entfernung aufgrund des stereoskopischen Sehens als kleiner als unendlich eingeschätzt werden können. Ebenso irritierend wirkt die Tatsache, dass sich der Regenbogen mit dem Beobachter mitbewegt: man kann deshalb bekanntlich nie zum Ende des Regenbogens gelangen.

Vorkommen

Regenbogen an einem Springbrunnen
Regenbogen-Fragment auf Wellenkamm

Natürliche Regenbögen entstehen meist dann, wenn nach einem Regenschauer der Himmel schnell aufklart und die tiefstehende Sonne das abziehende Niederschlagsgebiet beleuchtet. Demzufolge werden Regenbögen entweder vormittags im Westen oder gegen Abend im Osten beobachtet.

Demzufolge werden Regenbögen entweder vormittags im Westen oder gegen Abend im Osten beobachtet. 
Triviale Feststellung, die sogar noch Links für die Himmelsrichtungen benutzt.

In gemäßigten Klimazonen mit einer westlichen Vorzugswindrichtung wie in Mitteleuropa sind diese Bedingungen häufig am späten Nachmittag im Anschluss an ein Wärmegewitter erfüllt. Zu diesen kommt es meist bei Kaltfrontaufzügen, wobei am Vormittag im Mittel weniger Regen fällt als am Nachmittag, was auch die dann höhere Wahrscheinlichkeit bedingt auf einen Regenbogen zu treffen.

Im Sommer ist um die Mittagszeit herum kein Regenbogen zu beobachten, da die Sonne hierfür zu hoch steht. Im Winter besteht aber auch hier die Möglichkeit zumindest einen flachen Regenbogen anzutreffen.

Unabhängig davon kann ein Regenbogen recht häufig in einem Sprühnebel

Sprühnebel Was ist gemeint? Es gab bereits den Nebel-Regenbogen. 

beobachtet werden, vor allem bei Springbrunnen, Sprinklern und Wasserfällen. Da Regenbögen hier nicht auf ein Niederschlagsereignis angewiesen sind, kann man sie auch viel einfacher und regelmäßiger vorfinden.

Bei gutem Wetter ohne bewölkten Himmel kann somit jeder selbst einen Regenbogen machen. Diese künstlich gemachten Regenbögen sind genau dieselben wie die natürlich vorkommenden, mit dem einzigen Unterschied der Größe auf der Reflexionsfläche. Um den Scheitelpunkt des Regenbogens zu finden, muss man dabei seinen Blick in Richtung des eigenen Schattens richten.

Unter besonders günstigen Bedingungen

besonders günstigen Bedingungen Muss besonders erklärt werden, was diese sind.

ist sogar die Beobachtung von Regenbogen-Fragmenten in der Gischt von Wellen möglich.

Analemma, 23.3., 1:06

Fortsetzung ab Absatz 3

Abgrenzung zu anderen Phänomenen

4 dieser Erscheinungen sind unter Halo gemeinsam dargestellt. Hier nicht zerpflückt wiederholen.
Die 2 anderen Erscheinungen sind durch Beugung verursacht, also geringer mit dem Regenbogen verwandt.
Zirkumzenitalbogen am 10. Juli 2005

Der optische Effekt der Dispersion des Sonnenlichts lässt sich auch bei anderen Phänomenen beobachten, die jedoch nicht mit einem Regenbogen verwechselt werden sollten.

  • Ein 22°-Halo bildet einen kreisrunden Kranz um die Sonne, ein Regenbogen jedoch meist nur einen Bogen mit der Sonne im Rücken.
  • Nebensonnen als ein weiteres Halophänomen stehen waagerecht zum Beobachter neben der Sonne. Sie sind recht klein und haben keine Bogenform.
  • Glorien treten meist nur auf, wenn man von oben auf eine Wolke blickt. Sie sind vergleichsweise klein und kreisförmig und sollten nicht mit einem viel größeren geschlossenen Regenbogen verwechselt werden.
  • Zirkumzenitalbögen bilden nur sehr kleine Ausschnitte und dies aus einem konkaven, also nach oben gewölbten Bogen.
  • Zirkumhorizontalbögen entstehen, wenn die Sonne in einem Winkel von mindestens 57,8° über dem Horizont steht und sich in sehr hoch schwebenden sechseckigen Eiskristallen bricht.
  • Irisierende Wolken besitzen zwar mitunter die Farbgebung eines Regenbogens, jedoch keinen Bogen.

Chronologie der theoretischen Erklärungsmodelle Der Regenbogen beflügelt nicht nur die Fantasie des Menschen, die verschiedenen Erklärungsversuche haben auch den Erkenntnisprozess in der Physik und dort speziell in der Optik wesentlich vorangetrieben.

Eine befremdliche Feststellung, nachdem der Artikel beginnt mit: 
Ein Regenbogen ist ein Phänomen der atmosphärischen Optik
Zeichnung von Descartes zur Erklärung der Regenbogenentstehung

Die physikalische Erklärung der Entstehung des Regenbogens, wie sie oben skizziert wurde, geht im Wesentlichen auf eine von René Descartes im Rahmen seiner Essais Philosophiques 1637 veröffentlichte Abhandlung zurück.

Quelle zugänglich machen. 

Er griff darin die bereits um 1300 von Dietrich von Freiberg entwickelte Idee auf,

Quelle zugänglich machen.

wonach ein Regenbogen durch die Brechung von Sonnenstrahlen innerhalb einzelner Tröpfchen erklärbar sein muss. Descartes beschrieb den korrekten Strahlengang und formulierte die Maximumsbedingung unter Verwendung des zuvor

kurz zuvor, denn beide waren Zeitgenossen

von Willebrord Snell entdeckten Brechungsgesetzes. Er versuchte sich auch an einer Herleitung des Snellius'schen Gesetzes, die aber – wie viele seiner naturwissenschaftlichen Beiträge – im Ergebnis richtig, im Vorgehen jedoch grundlegend falsch war.

Verlangt ein paar Worte darüber, wie man zu richtigen Ergebnissen kommt, wenn man 
grundlegend falsch vorgeht.

Der korrekte Beweis

welcher Sache, Brechungsgesetz oder Erklärung des Regenbogens?

wurde kurze Zeit später sowohl von Christiaan Huygens als auch von Pierre de Fermat nachgeliefert. Aus dem Jahre 1700 stammt eine den Regenbogen betreffende Arbeit von Edmond Halley[5]. Hingegen brachte erst Isaac Newtons Theorie des Lichtes von 1704 die Dispersion ins Spiel und machte so die Farbenpracht verständlich.

War es zu Newtons Zeiten noch Thema kontroverser Diskussionen, ob Licht nun korpuskularen oder wellenartigen Charakter besitze, so war auch hier der Regenbogen ein wichtiger Ideengeber. Das Rätsel der überzähligen Bögen veranlasste 1801 Thomas Young zur Durchführung seines berühmten

berühmt klingt nach Idole verherrlichendem Journalismus.

Doppelspaltexperimentes. Er wies damit die Wellennatur des Lichtes nach und konnte im Gegenzug

Im Gegenzug wozu? 

1804 das Geheimnis durch die Betrachtung von Interferenzerscheinungen lüften.

Welches Geheimnis lüften? Nachweis der Wellennatur ist doch schon gesagt.

Youngs Theorie wurde 1849 von George Biddell Airy weiter verfeinert.

Von Young ist bisher keine Theorie den Regenbogen betreffend erwähnt.

Er erklärte die Abhängigkeit des exakten Farbverlaufs von der Tröpfchengröße. Die eigens entwickelten mathematischen Verfahren spielen im Rahmen der WKB-Näherung

Es ist sehr unwahrscheinlich, dass an dieser mathematischen Spezialität interessierte Leser 
auf die Erwähnung hier angewiesen sind. Die Mehrheit wird es als Wichtigtuerei registrieren.

noch heute eine wichtige Rolle für die moderne Quantenmechanik.

Moderne physikalische Beschreibungen des Regenbogens und ähnlich gearteter Probleme basieren im Wesentlichen auf der von Gustav Mie 1908 entwickelten und nach ihm benannten Theorie der Mie-Streuung.

Bei der Mie-Streuung werden gemäß Link Partikel betrachtet, deren Ausdehnung die Größenordnung der Wellenlänge des Lichtes hat. 
Wassertropfen sind größer.


Anwendung in der optischen Messtechnik

Der Regenbogenwinkel hängt – wie oben beschrieben – bei kugeligen Flüssigkeitströpfchen nicht von der Tropfengröße ab, sondern lediglich von der Brechzahl. Diese wiederum ist bei einer bestimmten Wellenlänge eine temperaturabhängige Materialkonstante der tropfenbildenden Flüssigkeit.

Deshalb kann durch Messung des Regenbogenwinkels, unter dem monochromatische Laserstrahlung von einem Nebel reflektiert wird, die Temperaturverteilung innerhalb des Nebels berührungslos bestimmt werden, falls – wie in technischen Anlagen meist der Fall – bekannt ist, welche Flüssigkeit den Nebel bildet.

Diese Anwendung sollte nachprüfbar sein: Quelle angeben.

Kulturelle Bedeutung

Es ist grundsätzlich fraglich, ob alles, was nicht mit der Physik des Regenbogens zu tun hat, hierher gehört. 
Regenbogen wird sonst immer als Symbol (im weitesten Sinne) gebraucht. Einige solche Anwendungen sind 
über Begriffsklärungen schon z.T. ausgelagert: 
in Politik, Heraldik, Musiker-Vereinigungen, im Radio, im Krieg. Es ist keine Logik erkennbar, 
warum hier dennoch einige Bereiche abgehandelt werden, warum z.B. erneut Musik-Bands erwähnt werden.
Ein besonderer und umfassender Artikel über den Regenbogen als Symbol scheint überfällig zu sein. 
Dahinein gehört dann auch sein kommerzieller Gebrauch, was bisher nirgends steht.

Als ein nicht alltägliches und beeindruckendes Naturschauspiel haben Regenbögen ihre Spuren in der Kulturgeschichte der Menschheit hinterlassen und sind zudem ein in unzähligen Kunstwerken dargestelltes Bildmotiv. Da der Regenbogen weltweit bekannt und mit zahlreichen positiven Attributen versehen ist, hat er auch immer wieder Einzug in die Symbolik gehalten.

Rolle in Religion und Mythologie

Ein ordnendes Kriterium im folgenden Sammelsurium fehlt. Kann man unterscheiden zwischen religiöser und mythischer Rolle? 

Der Regenbogen ist von jeher ein wichtiges Element zahlreicher Mythologien und Religionen über alle Kulturen und Kontinente hinweg. Die Mythen sprechen ihm dabei oft die Rolle eines Mittlers oder einer Brücke zwischen Götter- und Menschenwelt zu. Mythologien ohne Regenbogen sind selten.

Das verführt zu der Annahme, dass Mythos und Regenbogen Synonyme seien.

Der Regenbogen als Mythos findet sich auch in den Erzählungen relativ isolierter Kulturen; daraus lässt sich schließen, dass dieser Mythos auf der Erde an verschiedenen Orten und zu verschiedenen Zeiten eigenständig erdacht und überliefert worden ist. Es geht nicht allein auf den Verkehr und den Austausch unter den großen Kulturen der Menschheit zurück, wenn der Regenbogen-Mythos heute überall auf der Erde aufgefunden werden kann.

Die australischen Ureinwohner, die Aborigines, verehren in ihrer Schöpfungsgeschichte eine Regenbogenschlange als den Schöpfer der Welt und aller Lebewesen. Die chinesische Mythologie deutete den Regenbogen als einen Riss im Himmel, der von der Göttin Nüwa mit farbigen Steinen versiegelt wurde. Die griechische Mythologie sah ihn als Verbindungsweg, auf dem die Göttin Iris zwischen Himmel und Erde reist. Nach der irischen Mythologie hat der Leprechaun seinen Goldschatz am Ende des Regenbogens vergraben. In der germanischen Mythologie war er die Brücke Bifröst, welche Midgard, die Welt der Menschen, und Asgard, den Sitz der Götter, miteinander verband. Während des Ragnarök, des Weltuntergangs der nordischen Mythologie, wird der Regenbogen zerstört. Regenbogen tauchen auch in der Schöpfungsgeschichte der Diné auf. Sie spielen eine Rolle bei der religiösen Initiation der Fang, die, wie auch in manch anderen Kulturen üblich, ihren Kindern verbieten, einen Regenbogen zu betrachten. Bei den Inka vertrat der Regenbogen die Erhabenheit der Sonne.

Joseph Anton Koch: Noahs Dankopfer (um 1803)

Im Alten Testament der Bibel, 1. Mose 9, ist der Regenbogen ein Zeichen des Bundes, den Gott mit Noah und den Menschen schloss. Laut biblischer Erzählung versprach Gott nach dem Ende der Sintflut: „Ich will hinfort nicht mehr die Erde verfluchen um der Menschen willen, denn das Dichten und Trachten des menschlichen Herzens ist böse von Jugend auf.“ (1.Mose 8,21)

In diesem Zitat fehlt aber der Regenbogen.

Der Regenbogen als Zeichen des Friedens zwischen Mensch und Gott nimmt damit eine altorientalische Tradition auf, nach der das Phänomen als abgesenkter, also nicht schussbereiter Bogen Gottes interpretiert wurde:

„Und wenn es kommt, dass ich Wetterwolken über die Erde führe, so soll man meinen Bogen sehen in den Wolken. Alsdann will ich gedenken an meinen Bund zwischen mir und euch und allem lebendigen Getier unter allem Fleisch, dass hinfort keine Sintflut mehr komme, die alles Fleisch verderbe.“ (1. Mose 9, 14–15)

Aufgrund dieser Stelle ist der Regenbogen im Judentum bis heute ein wichtiges religiöses Symbol. Wer einen Regenbogen sieht, spricht:

„Gepriesen seist du, Ewiger, unser Gott; du regierst die Welt. Du erinnerst dich an den Bund und bleibst ihm treu. Du stehst zu deinem Wort.“ (zit. nach Seder ha-Tefillot – Das jüdische Gebetbuch S. 539; vgl. bBer 59a).

Der mittelalterliche jüdische Bibelausleger Nachmanides erklärte zu 1. Mose 9,12: Der Bogen in den Wolken symbolisiere, dass Gottes Zorn zu Ende sei, denn er habe wie ein Krieger seinen Bogen gesenkt, um Frieden zu erklären.

Die Vorstellung des Regenbogens als eines in die Wolken gehängten göttlichen Kriegsbogens ist sehr alt. Es findet sich bereits in der assyrisch-babylonischen Mythologie. In der babylonischen Schöpfungsgeschichte Enuma Elisch („Als oben…“, im Folgenden Ee) wird davon erzählt, dass der Schöpfergott Marduk das Leben auf der Erde ermöglichte, indem er die Urflut, die Göttin Tiamat, tötete. Dieser Kampf geschah mit einem Bogen (Ee IV,35-40). Um das dauerhafte Bestehen der Schöpfung zu gewährleisten, nahm der höchste Gott, der Himmelsgott Anu, den Bogen Marduks und setzte ihn als „Bogenstern“ an den Himmel. Im babylonischen Mythos wird der Bogen vergöttlicht: Er darf in der Versammlung der Götter Platz nehmen und wird ewig erfolgreich sein (Ee VI,87-94). Der Bogen am Himmel ist in der altorientalischen Vorstellungswelt also ein kriegerisches Symbol für die göttliche Macht, Störungen auf der Erde zu bekämpfen und zu besiegen und so das Leben zu sichern. Assyrisches Rollsiegel: Eine Gottheit bekämpft mit dem Bogenstern eine dämonische Macht. (1. Jahrtausend v.d.Z.)

Im Christentum wird ein anderer Traditionsstrang wichtig. In Ezechiel 1 sieht der Prophet einen gewaltigen Thronwagen. Oben auf dem Thron ist ein heller Schein

„wie der Anblick des Bogens, der sich an einem Regentag in den Wolken zeigt. … So etwa sah die Herrlichkeit Gottes aus (1,28).“

Im griechisch verfassten Neuen Testament kommt der Regenbogen nur ein einziges Mal vor.

Na sowas. Das ist aber kontraproduktiv.

In der Offenbarung des Johannes 10,1 erscheint ein Engel mit einem Buch vom Himmel herab, er ist in eine Wolke gehüllt und über seinem Kopf ist ein Regenbogen. Dieses Bild basiert auf Ezechiel 1,28. Das griechische Wort für diese Erscheinung heißt „iris“, und hier wird deutlich, dass die antike Vorstellung des Kriegsbogens vergessen ist. Wichtig an der Erscheinung ist die schillernde Farbenpracht, die Himmel und Erde verbindet. Das griechische Wort bezeichnet neben dem Regenbogen auch ganz allgemein einen farbigen Ring (oder Halbring). In Offenbarung 4,3 steht in vielen deutschen Übersetzungen zwar Regenbogen, aber hier heißt es ausdrücklich, dass es sich um einen grünlich schimmernden Lichtkranz handelt – also einen Heiligenschein, der Gottes Gegenwart anzeigt. In der folgenden christlichen Tradition lebt das Symbol auf Ikonen und in der mittelalterlichen Malerei und Bildhauerei.

Warum hier erwähnt? Ein Absatz über Vorkommen in der Kunst folgt später.

Auf Altären und auf den Darstellungen des Jüngsten Gerichts über dem Eingangsportal einer Kirche wird Christus manchmal als der auf (oder in) einem Regenbogen sitzende Richter dargestellt werden – eine freie Aufnahme der Stellen in der Offenbarung vermischt mit Ezechiel. Der Regenbogen symbolisiert hier die Göttlichkeit Christi. Seit dem 12. Jh. wird auch Maria in einem Regenbogen oder auf einem Regenbogen sitzend dargestellt und dadurch ihre Heiligkeit zum Ausdruck gebracht.

Dieses Motiv als göttlicher Bogen existiert auch in der indischen Mythologie. Hier nutzt Indra den Regenbogen, hier als Indradhanush bezeichnet, um die Dämonenschlange Vrta (eine Asura) mit Blitzen zu töten.

Legendenbildung ist auch der historische Grund für die Bezeichnung der Regenbogenschüsselchen. Im heutigen Süddeutschland nannte so der Volksmund die gewölbten keltischen Münzen, die des Öfteren nach starken Regenfällen auf dem gepflügten Acker gefunden wurden. Man konnte sich die Herkunft nicht anders erklären, als dass die Goldstücke am Ende des Regenbogens hinterlassen worden sein mussten.

Regenfall und Regenbogen gehören nicht zwingend zusammen.

Regenbogen als Symbol

Alles, was nicht Physik ist, ist Symbol, s.o.. Geht es hier nur um bildliche Symbole? 
Dazu würde die darstellende Kunst auch gehören.
Flaggen gehören nahe zu Heraldik.
Bei Durchsicht dieses Absatzes drängt sich die Frage deutlich auf, 
ob die symbolische Bedeutung hier vollständig besprochen (s.o.) 
und wie eigentlich alles andere Nicht-Physikalische zu bewerten ist.
Die Regenbogenfahne ist ein internationales schwullesbisches Symbol.
Italienische Friedensfahne mit umgekehrter Farbreihenfolge

In Anlehnung an eine indianische Prophezeiung, derzufolge nach der Verwüstung der Erde Krieger des Regenbogens („Menschen vieler Farben, Klassen und Glaubensrichtungen“) die Welt bevölkern werden, erkor Greenpeace den Regenbogen zu seinem Erkennungszeichen und taufte sein Flaggschiff auf den Namen Rainbow Warrior.

Die Regenbogenfahne ist ein in der Geschichte wiederkehrendes Symbol, das meist Vielfalt zum Ausdruck brachte. Sie war die Flagge der alten südamerikanischen Hochkultur der Inkas. Während der Bauernkriege symbolisierte sie die Hoffnung auf Veränderung. Heutige Homosexuelle sehen die Regenbogenfahne mit 6 Farben als Zeichen für Toleranz und sexuelle Freiheit. In jüngerer Zeit, insbesondere seit den Demonstrationen gegen den Irak-Krieg 2003, führte die italienische Friedensbewegung eine Regenbogenfahne mit 7 Farben mit dem Aufdruck Pace, italienisch für Frieden, ein. Sie dient inzwischen der internationalen Friedensbewegung als Symbol. Die offizielle Flagge des Jüdischen Autonomen Gebiets zeigt einen ebenfalls siebenfarbigen Regenbogen vor weißem Hintergrund.[6] Die Farbreihenfolge ist gegenüber der italienischen Friedensfahne wiederum umgekehrt.

In der New Age Bewegung erschien der Regenbogen als Logo für die erste Buchreihe der Bewegung „New Age, Modelle für morgen“ und ziert seitdem zahlreiche esoterische Publikationen und Produkte. Hier hat der Regenbogen seine Symbolik jedoch verloren und dient lediglich zur Schaffung positiver Gefühle, Harmonie und Ganzheit.

Teile der Hamburger Grün-Alternativen Liste, die nach der Bielefelder Bundesdelegiertenkonferenz von Bündnis 90/Die Grünen Anfang 1999 aus der Partei ausgetreten waren, nannten sich in der Folgezeit Regenbogen – Für eine neue Linke. Ihre Abgeordneten im Landesparlament, der Bürgerschaft, wurden als Regenbogenfraktion bezeichnet.

Auch auf die Sprache hat der Regenbogen abgefärbt, wovon Begriffe wie Regenbogenpresse und Regenbogenforelle zeugen. Ein baden-württembergischer privater Radiosender nennt sich Radio Regenbogen. Auch der Name der Hilfsorganisation AIDA e.V. setzt sich aus den jeweiligen Anfangsbuchstaben aus dem portugiesischen Arco Iris do Amor (zu Deutsch: Regenbogen der Liebe) zusammen.

Regenbogen als Kunstmotiv

Joseph Anton Koch: Heroische Landschaft mit dem Regenbogen (1805)
Regenbogen über dem Künstlerort Collioure
Regenbogen über dem Künstlerort Collioure: Was hat dieses Bild mit dem Thema gemein?

Der Regenbogen als Bildmotiv findet sich früher oder später bei nahezu allen Landschaftsmalern, stellt aber auch ein begehrtes Ziel vieler Naturfotografen dar. Zu nennen sind hier beispielsweise Caspar David Friedrich, Joseph Anton Koch oder Peter Paul Rubens.

Sind das Maler oder Fotografen?

Dabei ist der Regenbogen auch ein beliebtes Laienmotiv und in künstlerischen Lehreinrichtungen

Was sind künstlerische Lehreinrichtungen? 

aller Altersstufen zu finden.

Eine Darstellung eines Regenbogens, allerdings reduziert auf die Lichtbrechung an einem einfachen Prisma, findet sich auf dem Plattencover des Albums Dark Side of the Moon von Pink Floyd.

Im verlinkten Artikel ist nicht einmal diese Reduzierung enthalten. 
Es gibt dort nur ein beliebiges Bild mit einem Prisma ohne Regenbogen.

Siehe auch: Bildergalerie Regenbögen in der Malerei

Diese Galerie enthält kein einziges gemaltes Bild.

Regenbogen in der Musik

Musik → Liedtexte. (Fremdkörper bleibt hier der Regenbogen-Name einer Band, s.o.).

Auch in der Musik finden sich viele Motive rund um den Regenbogen. So singt Judy Garland 1939 in Das zauberhafte Land, einer Verfilmung des Zauberers von Oz, von einem „Land irgendwo über dem Regenbogen“ (Over the Rainbow), in dem die „Träume wahr werden“. Dieses Lied wurde 1994 durch eine Coverversion von Marusha zu einer Techno-Hymne. In das gleiche Genre fiel auch Rainbow To The Stars von Dune.

Im Bereich des Metal ist z.B. der Hammerfall-Song At The End Of The Rainbow zu nennen, wo man am „Ende des Regenbogens mit Gold in den Händen“ stehen will.

Rainbow war eine Hardrockband, die 1975 vom Gitarristen Ritchie Blackmore gegründet wurde. Und die Deutsche Beatgruppe The Rainbows hatte in den 60er Jahren den Hit My Baby Baby Balla Balla.

Die Rolling Stones schilderten 1967 in ihrem Song "She's A Rainbow" diverse Drogenerfahrungen und bedienten sich dabei der Farbenpracht des Regenbogens als Metapher für die Weiblichkeit.

Bezugnehmend auf den sprichwörtlichen Topf mit Gold am Ende des Regenbogens sang die Gruppe ABC um Martin Fry 1982 in dem Titel "All Of My Heart": "No I won't be told there's a crock of gold at the end of the rainbow".

Der französische Komponist Olivier Messiaen, der mit der Fähigkeit der Synästhesie begabt war, komponierte in seinem 1944 entstandenen "Quartett auf das Ende der Zeit" (Quatuor pour la fin du temps) einen Satz mit dem Titel "Tanz der Regenbogen für den Engel, der das Ende der Zeit ankündigt" (Fouillis d'arc-en-ciel, pour l'Angel qui annonce la fin du temps).

Siehe auch: Naturerscheinung, Phänomenologie und Luftfeuchtigkeit

Literatur

  • Marcel G. Minnaert: Licht und Farbe in der Natur. Birkhäuser Verlag, Basel 1992, ISBN 3-7643-2496-1.
  • Herch M. Nussenzveig: The theory of the rainbow. In: Scientific American, Vol. 236, No. 4, April 1977, S. 116–127
  • Kristian Schlegel: Vom Regenbogen zum Polarlicht. Leuchterscheinungen in der Atmosphäre. Spektrum Akademischer Verlag, Heidelberg 2001, ISBN 3-8274-1174-2.
  • Michael Vollmer: Lichtspiele in der Luft. Atmosphärische Optik für Einsteiger. Spektrum Akademischer Verlag, Heidelberg 2005, ISBN 3-8274-1361-3.

Weblinks

Wiktionary: Regenbogen – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Commons: Regenbogen – Album mit Bildern, Videos und Audiodateien

Einzelnachweise

  1. Kreuzende Regenbögen Wilhelm-Foerster-Sternwarte Berlin, Bild der Woche, Oktober 2000
  2. Der Regenbogen des gespiegelten Sonnenlichts Fachgruppe „Atmosphärische Erscheinungen“ der Vereinigung der Sternfreunde e.V.
  3. Ungeklärte Regenbogenerscheinungen, Fachgruppe „Atmosphärische Erscheinungen“ der Vereinigung der Sternfreunde e.V.
  4. Eisbogen (PDF, 2. Seite)
  5. Edmond Halley: De Iride, Sive de Arcu Caelesti, Differtatio Geometrica, qua Methodo Directa Iridis Ntriusq. Philosophical transactions 22, 1700/1701, S. 714-725
  6. Flagge des Jüdischen Autonomen Gebiets im Flaggenlexikon.

Analemma 15:25, 25. Mär. 2009 (CET)Beantworten

Überarbeitungs-Konzept (physikalischer Teil)

Vorschlag für die einleitende Zusammenfassung:

Der Regenbogen ist eine Naturerscheinung, bei der die Farben des Sonnenlichtes durch Streuung und Spiegelung in Wassertropfen sichtbar werden.

Hat man die Sonne im Rücken und vor sich eine Regenwand, so sieht man einen schmalen farbigen Bogen am Himmel. Er ist außen rot und innen violett. Manchmal sieht man darüber einen schwächeren zweiten Regenbogen mit Farben in umgekehrter Reihenfolge.

Um Leser-freundlich zu sein, sind bewußt vorwiegend Worte der Umgangssprache verwendet. 
Die Fachbegriffe erscheinen erst beim Betätigen der Links.
Der Verzicht auf über den Neben-Bogen hinaus gehende Spezialitäten und Seltenheiten geschieht vorerst auch bewußt. 
Sogar der in der Tourismus-Branche ausgeschlachtete Hinweis auf einen Regenbogen bei Vollmond am Wasserfall kann später erfolgen.

Vorschlag für die Gliederung

Regenbogen-Beobachtung

  • Haupt-Regenbogen
  • Neben-Regenbogen
  • "überflüssige" Regenbögen
  • andere Wassertropfen als im Regen: am Brunnen, an der Dusche im Freibad, beim Wässern mit dem Gartenschlauch, in der Gischt von Meereswellen etc.
  • anderes als direktes Sonnenlicht: vom Mond, von künstlichen Lichtquellen

Erklärung des Haupt-Regenbogens

  • sichtbare Spektral-Farben des Sonnen-Lichts
  • Farb-abhängige Brechung des Sonnen-Lichts
  • Sonnenlicht im Wassertropfen: Teil-Reflexion und Brechung beim Auftreffen auf jeder Grenzfläche
  • Licht-Sammel-Wirkung eines Wassertropfens: monochrom → farbig differenziert → außen dunkel, innen hell (bezogen auf am Tropfen reflektierten Licht-Kegel)
  • Beobachter in der Spitze eines Kegels über dem Regenbogen, ihn erreicht Licht von vielen Regentropfen: rot von aussen, blau von innen, hell von noch weiter innen
  • Welcher Teil des Regenbogens ist sichtbar? Sonne am Horizont, Sonne hoch, Sonne zu hoch

Erklärung des Neben-Regenbogens

  • Sonnen-Licht im Wassertropfen: Wie Haupt-, aber doppelte Reflexion → anderer Lichtweg, umgekehrte Farbreihenfolge
  • Situation beim Beobachter: ...

Erklärung von Besonderheiten

  • "überflüssige" Regenbögen
  • Einfluss der Tropfen-Größe
  • in den Wassertropfen reflektiertes Licht ist polarisiert

Chronologie der theoretischen Erklärungsmodelle

Analemma 19:33, 25. Mär. 2009 (CET)Beantworten

Intro: "Naturerscheinung" (vielmals verwendet) ist für die Definition hier an dieser Stelle viel zu ungenau! Genaugenommen ist es ein atmosphärisch-optisches Phänomen, zur besseren Verständlichkeit wäre verwendbar: eine atmosphärisch-optische Erscheinung! "...so sieht man einen schmalen farbigen Bogen am Himmel" ist nichtssagend, bzw. auch nicht immer richtig. Was ist schon schmal? Für mich kann er durchaus relativ breit sein. Dass er ein Bogen ist, ist trivial , ebenso dass er farbig ist (dies ist kein Wörterbuch für nicht-deutsch sprachige Mitmenschen, sondern eine Enzyklopädie), Akzeptable Beschreibung steht bereits in der Definition: "kreisbogenförmiges Lichtband" . Nicht richtig ist, dass ein Regenbogen am Himmel wahrgenommen werden muss, sondern kann durchaus vor dem Hintergrund eines Berges oder vor dem Hintergrund eines Wasserfalles wahrgenommen werden. Deswegen ist es nicht entscheidend vor welchem Hintergrund er wahrgenommen wird, sondern was diese Erscheinung verursacht. Auch ist er nicht immer rot bis violett, bei tiefstehender Sonne ist das violett absolut nicht zu sehen! Ein Hinweis auf Spektralfarben genügt, jedenfalls ist die Reihenfolge der Farben hier überflüssig, informativer ist warum gerade diese Reihenfolge, deswegen war "charakteristischer Farbverlauf" hier treffend, da der Farbverlauf eben charakteristisch für die Aufeinanderfolge der Spektralfarben ist . in der intro fehlt: Die Nennung was ein Regenbogen auch sein kann (um dem Leser einen Überblick zu verschaffen). Dazu gehört auch der seltene Mondregenbogen.
Gliederung: Was sind "überflüssige" Regenbögen? Der Ausdruck ist schlechtes Deutsch, da Regenbögen per se nicht überflüssig sein können, sondern der Ausdruck ist auch unbekannt! Die Gliederung ist auch nicht so entscheidend, die Reihenfolge sieht jedenfalls soweit ok aus. --Andys 20:52, 25. Mär. 2009 (CET)Beantworten

Intro Änderung von Analemma

Die neue intro ist eine furchtbare schlechte Verschlimmbesserung, sorry dass ich so deutlich werden muss. Schon der Anfang mit "Der Begriff kommt davon" ist nicht nur schlechtestes Deutsch, sondern ist auch schlichtweg falsch, denn der Begriff hat sich nicht aufgrund der Erscheinung an sich gebildet (jedenfalls lässt sich das nicht mehr nachvollziehen) und hat auch nicht nichts mit Bedeutung des Begriffes zu tun. Weiter im Satz erwähnt:" dass diese Erscheinung am häufigsten zu beobachten ist, wenn die Sonne auf Regentropfen scheint" ist schlichtweg falsch, denn er ist nicht häufig zu beobachten wenn die Sonne auf Regentropfen trifft, das tut sie praktisch bei jeder Regenwolke, sondern es ist eher dann seltener der Fall. etc. etc.. So bleibt mir hier nur der totalrevert, obwohl ich deine Einwände zum grössten Teil als berechtigt ansehe! Gruß --Andys 18:13, 24. Mär. 2009 (CET)Beantworten

Wie soll ich Dich ernst nehmen?
  • Du freust Dich, dass jemand einen Artikel überarbeitet, an dessem schlechten Zustand Du selbst beteiligt warst.
  • Du liegst auf der faulen Haut und wartest, dass Andere die Arbeit machen.
  • Solange Kritik nur auf der Diskussionsseite steht, musst Du Dich auch noch nicht regen.
  • Bei Edits am Artikel schlägst Du aber sofort zurück. Dass Du bei der Pelz-Wäsche auch nass wirst, willst Du vermeiden.
  • Deine Meldung ist nicht konstruktiv. Sie ist unhöflich, nicht ausreichend fundiert und anmaßend.
  • Sie hat zum Teil die schlechte Form, die Du meinst attackieren zu müssen. Was hat nicht nichts mit was zu tun? Wie verwendet man Satzzeichen?
  • Deine schon in der älteren Diskussion erkennbaren Versuche, mit Spitzfindigkeiten die Verbesserung des Artikels eher zu hemmen als zu unterstützen, werde ich selbstverständlich nicht goutieren.
Analemma 20:08, 24. Mär. 2009 (CET)Beantworten
Schade, dass du persönlich wirst, aber das ist nicht mein Problem, ich habe keine Zeit dafür. Zu deinen Punkten:
zu 1) Was ich eingefügt habe, kann man jedenfalls stehenlassen. Außerdem ist der Artikel so schlecht nicht!
zu 2) Ich habe einen anstrengenden Beruf, der von mir alles abverlangt, da ich auch beruflich öfters in der (englischen und deutschen) Wikipedia nachschlage, beteilige ich mich auch, sofern ich nebenbei Zeit finde.
zu 3) Ich hatte von dir eigentlich eine Verbesserung erwartet, nach der wirklich konstruktiven Mängelliste von dir.
zu 4) Ich bin 16 Stunden online, da entgeht mir "fast" nichts;)
zu 5) Eine Meldung war das nicht. Meine Kritik ist konstruktiv, da alleine auf die Änderungen bezogen und Missstände genannt.
zu 6) Sorry, keine Ahnung was damit gemeint ist!
zu 7) Ich versuche nichts zu hemmen, also musst du auch nicht goutieren.
Vorschlag: Da du fast den ganzen Artikel hier in die Disku gestellt hast, wird es dir wohl nichts ausmachen, auch deine Änderungen in der intro hier zu diskutieren. Gruß --Andys 20:53, 24. Mär. 2009 (CET)Beantworten

Absurd

Dieser lesenswerte Artikel beginnt mit einem "Überarbeiten"-Hinweis. Das ist lächerlich. Vorschlag: Den Artikel bei den Lesenswerten-Kür zur Abwahl stellen und den Hinweis bei Abwahl belassen, oder den Hinweis entfernen, wenn der Artikel wieder lesenswert wird oder ihn niemand zur Abwahl stellen will. - AlterVista 21:49, 30. Mär. 2009 (CEST)Beantworten

...Hinweis entfernen, wenn der Artikel wieder lesenswert wird --Andys 23:28, 30. Mär. 2009 (CEST)Beantworten


Unangebracht ich finde die pontenziele Rolle des Regenbogens in der Literatur sehr unangebracht, da ist gar kein Goldtopf. (nicht signierter Beitrag von 193.171.155.84 (Diskussion | Beiträge) 11:01, 28. Mai 2009 (CEST)) Beantworten

eine sehr regionale irische Sage: schau mal hier: Leprechaun --Andys |  12:51, 28. Mai 2009 (CEST)Beantworten

Weitere Symbole

... für Trauer (so ein langer Dlf-Beitrag gestern über T.). Auch im Buddhismus Hilfe, wohl einen Tulku zu finden? --sieben 16:21, 9. Nov. 2009 (CET)Beantworten

Zum wiederholten Mal bitte ich Dich, Deine Beiträge so zu verfassen, dass sie auch für andere Menschen verständlich sind. Das gilt nicht nur für Artikel-Edits, sondern auch für Diskussionsbeiträge. Auch wenn Dir das offensichtlich Mühe bereitet -- nimm BITTE Rücksicht auf die Zeit und Kapazität der anderen Leser und Mitarbeiter. Bitte verschiebe den Fokus Deiner Beiträge von Quantität auf Qualität.--84.158.114.68 18:03, 9. Nov. 2009 (CET)Beantworten

Rogenbogen mittags im Sommer

Im Fernsehen wurde gestern erzählt, es gäbe in Deutschland mittags im Sommer niemals einen Regenbogen. Ich behaupte, das ist Quatsch. Richtig ist zwar (vielleicht), was im Artikel steht, nämlich dass die Ablenkung der Sonnenstrahlung maximal 40 Grad beträgt. Ok, aber das schließt nicht aus, das etwa senkrecht einfallendes (in Deutschland nicht ganz senkrecht) Sonnenlicht auf einen Wassertropfen trifft, 40 Grad abgelenkt wird und auf der Erde in das Auge eines Betrachters fällt, der einen Regenbogen sieht. 95.222.228.77 14:09, 30. Dez. 2009 (CET)Beantworten

Ich denke das ist eindeutg Quatsch und kann auch nicht mit der Totalreflektion begründet werden. Wird das Licht nur geringfügig abgelenkt liegt der Winkel zum Lot bei 90 Grad und es tritt Totalreflexion ein, das heißt das Licht wird vollständig reflektiert und nicht gebrochen. Bei größerer Ablenkung wird der Winkel zum Lot für Totalreflexion unterschritten und entsprechend nicht vollständig reflektiert. Dies schließt aber auch nicht aus, dass ein Regenbogen schichtbar wird, weil immerhin noch ein Teil des Lichts reflektiert wird. Die Aufspaltung in die Spektralfarben wird ohnehin nicht durch die Reflektion bewirkt sondern durch die unterschiedliche Lichtbrechung (Dispersion). Diesen Effekt gibt es zum Beispeil auch bei einem Prisma ohne jede Reflexion. 95.222.228.77 12:36, 31. Dez. 2009 (CET)Beantworten
Das ist kein Forum um Fragen über den Regenbogen zu beantworten, sondern um den Inhalt des Artikels zu diskutieren. Deine Erklärung oben sind unverständlich abgesehen von der Frage ob mittags im Sommer niemals einen Regenbogen scheint. Deswegen eine Gegenfrage als Silvesterquiz gewissermassen; In welchem Bild im Artikel könnte man auch mittags im Sommer einen Regenbogen beobachten? Gruß --Andys |  15:01, 31. Dez. 2009 (CET)Beantworten


Also versuch ich es nochmal mit dem Bild zu erklären. Dem Bild ist zu entnehmen, dass eine Aufspaltung des Lichts erfolgen kann, wenn das Sonnenlicht um insgesamt 42 Grad abgelenkt wird. Wenn wir mal von einem kugelförmigen Tropfen ausgehen, kann die Sonnenstrahlung offenbar aus jeder Richtung kommen, ein Teil des Lichts wird immer wie in der Abbildung gezeigt abgelenkt und aufgespalten. Selbst wenn die Sonne senkrecht einfällt, kann Licht, das um 42 Grad abgelenkt wird, die Erde erreichen und beobachtet werden. Ich kann nicht erkennen, wieso die Entstehung eines Regenbogen nur bei bestimmten Sonnenstand möglich sein sollte. Oder? - wer kann erklären, weshalb dies nur bei einem bestimmten Sonnenstand möglich sein sollte. 95.222.228.77 16:47, 31. Dez. 2009 (CET) Beantworten

Also wenn die Sonne zum Beispiel senkrecht (im Zenit) stehen würde, muss man sich das Bild um 90 Grad gedreht denken, so dass die Sonnenstrahlen von oben kommen. Der Regenbogen ist dann nur von oben zu sehen. Das Licht wird ja nicht um 42 sondern um 180 - 42 = 138 Grad abgelenkt. Von einem Berg oder im Flugzeug sollte der Regenbogen aber dennoch zu beobachten sein. 95.222.228.77 18:21, 31. Dez. 2009 (CET)Beantworten
Ok, jetzt habe ich es halbwegs begriffen wie die Argumentation läuft. Auf dem flachen Land am Boden in Deutschland sollte bei dem beschriebenen Strahlengang, mittags am 23 Juni, nie ein Regenbogen zu sehen sein, in Alaska aber wohl schon. Wegen der Totalrefexion kann der Reflexionswinkel zum Lot im Innern nicht 90 Grad erreichen, weil der reflektierte Strahl dann nicht gebrochen sondern vollständig reflektiert würde. Der einfallende Strahl könnte auch erst gar nicht in den Tropfen eindringen. Kann der Winkel aber tatsächlich nur 42 Grad erreichen? Es ist ja nicht gesagt, dass es genau eine Reflektion geben muss. Ein Strahlengang wie in einem Prisma ohne Reflektion oder mehrere Reflektionen sind ebenfalls denkbar. Schließlich sind die Regentropfen auch keine exakten Kugeln. 95.222.228.77 18:55, 31. Dez. 2009 (CET)Beantworten
Ja, mit der Einschränkung deiner Erklärung dazu. 1. Es gibt unter den bestehenden Bedingungen im Regentropfen keine Totalreflexion und für den Austrittswinkel des Haupt-Regenbogens ist der Winkel max. ungefähr 42 Grad. Das heisst wenn die Sonne senkrecht steht muss der Haupt-Regenbogen ungefähr 90-42 = 48 Grad unter halb der Ebene Beobachter/Horizontaltkreis zu beobachten sein. Dies ist in der Regel in Deutschland nur von einem Flugzeug möglich. Für die zahlreichen möglichen Nebenbögen ergeben sich aber andere Verhältnisse. --Andys |  16:07, 1. Jan. 2010 (CET)Beantworten
Den Haupt-Regenbogen könnte man also knapp am unteren Rand mit Scheitelpunkt ~ in der Mitte des Bildes erkennen sein, falls das Bild von der Position mittags im australischen Sommer (Melbourne) aufgenommen würde. --Andys |  16:14, 1. Jan. 2010 (CET)Beantworten

Berechnung des Strahlengangs

Der Strahlengang durch einen kugelförmigen Tropfen kann mit dem Brechungsgesetz aus dem Reflexionswinkel und der Brechungszahl von Wasser berechnet werden. Hierfür wird der Winkel zum Lot benötigt. Das Lot verläuft durch den Mittelpunkt. Der Punkt an dem die Reflexion auftritt, der Punkt des Lichteintritts und der Mittelpunkt der Kugel bilden ein gleichseitges Dreieck. Daraus ergibt sich, dass der Winkel zum Lot beim Eintritt in die Kugel, genau der halbe Öffnungswinkel oder der Winkel zum Lot bei der Reflexion ist. Das Brechungsgesetz erlaubt es nun den Winkel zum Lot außerhalb der Kugel in der Luft zu berechnen. Beim Austritt aus der Kugel tritt das gespeigeltes Dreieck auf. Der Winkel zwischen einlaufendem Strahl und auslaufendem Strahl ist die zweifache Differenz zwischen dem Öffnungswinkel bei der Reflexion und dem Winkel zum Lot außerhalb der Kugel. Die entsprechende Formel zur Berechnung der Ablenkung habe ich in den Artikel reingeschrieben. 95.222.228.77 15:20, 1. Jan. 2010 (CET)Beantworten

Der Grenzwinkel für Totalreflexion wird aber beim Wasser nie erreicht. Der maximale Reflexionswinkel ist 45 Grad. Was meint ihr? Sollte ich das auch noch in den Artikel schreiben. Eigentlich ist das Bild dann ja falsch, weil ein Teil der Sonnenstrahlung hinten aus dem Tropfen austritt. 95.222.228.77 15:41, 1. Jan. 2010 (CET)Beantworten

Es wurde im Artikel erwähnt, dass bei Ein- und Austritt ein Teil des Strahls gemäß dem Brechungsgesetz abgelenkt und auch an der rückwärtigen inneren Oberfläche teilweise reflektiert wird. Der Rest des Strahls hat aber keinen weiteren Einfluss auf die Entstehung des Regenbogens und ist deswegen im Bild nicht eingezeichnet. Die qauntitative Herleitung und Formel des Snellius-Brechungsgesetzes werde ich aber wieder aus dem Artikel nehmen, da 1. dies nur eine näherungsweise quantitative Berechnung nach Descartes zulässt (tatsächlich ist die Herleitung nach Airy gebräuchlicher, aber selbst die nur eine Näherung, da man bei der zweiten Relexion ebenso die Polaisation des Lichtes beachten muss etc anderer Einflussgrößen), 2. ist diese Herleitung nicht Oma-tauglich (bzw für den normalen Leser unverständlich. --Andys |  15:58, 1. Jan. 2010 (CET)Beantworten
Der Rest des Strahls könnte sehr wohl Teil eines Regenbogen sein. Das ist nämlich gerade der Punkt auf den ich hinaus wollte. Die Reflexion führt ja gar nicht zu einer Aufspaltung des Lichts in seine Spektralfarben. Hierfür ist allein die Lichtbrechung verantwortlich. Der Strahlengang könnte auch ohne Reflexion verlaufen, ganz ähnlich wie in einem Prisma. Aus diesem Grund kann ein Regenbogen auch bei senkrechtem Sonnenstand entstehen und zwar für einen Beobachter auf dem flachen Land, der den Bogen neben der Sonne sieht. 95.222.228.77 16:11, 1. Jan. 2010 (CET)Beantworten
Nein hier überlagern sich die verschiedenen Strahlen unter den verschiedenen Einfallswinkel zu sehr (es gibt keine max. Winkel), allerdings zeigen die Berechnungen nach Airy dass es tatsächlich einen Nebenbogen 3 oder 4 Ordnung gibt der nahe um Sonne herum verläuft, leider sind diese Bögen zu Lichtschwach um wirlich beobachtet zu werden. Gruß --Andys |  16:20, 1. Jan. 2010 (CET)Beantworten
Der Beobachter sieht ja nicht Licht unter den unterschiedlichsten Winkeln. Der Winkel ist durch die Richtung der Sonnenstrahlung, den Ort des Beobachters und des Wassertropfens eindeutig festgelegt. Damit sieht der Bebachter nur Licht mit einem bestimmten Strahlengang, zumindest mit einem definierten Ablenkungswinkel. Regenbögen, die aus einem Strahlengang ähnlich wie bei einem Prisma resultieren muss es auch geben. 95.222.228.77 17:05, 1. Jan. 2010 (CET)Beantworten
Ok, ich habe nochmal darüber nachgedacht. Durch Sonnenstand und die Orte von Beobachter und Tropfen wird der Ablenkwinkel festgelegt. Der Ablenkwinkel kann sich aber durch die Wellenlänge als auch durch den Strahlengang ändern. Falls für einen gegebenen Winkel zwischen einfallenden und ausfallendem Strahl alle Farben möglich sind, bei verschiedenen Strahlengängen durch den Tropfen, erscheint der Tropfen insgesamt weiß oder grau. Einfarbig erscheint er nur, wenn durch den Winkel auch die Wellenlänge festgelegt ist. Wahrscheinlich gibt es aus diesem Grund eine sichtbare Aufspaltung der Farben nur beim Strahlengang mit ein oder zwei Reflexionen. Aber wirklich erklärt wird das wohl nirgends. 95.222.228.77 19:12, 1. Jan. 2010 (CET)Beantworten
Bei der Reflexion gibt es tatsächlich Totalreflexion, wenigsten für eine Polarisationsrichtung, nämlich beim Brewster-Winkel.

Erklärung

Also die Sache mit der Interferenz verstehe ich nicht. Ich denke die Entstehung des Regenbogens hat nichts mit der Interferenz zu tun, sondern nur mit der unterschiedlich starken Lichtbrechung verschiedener Wellenlängen oder Farben. 95.222.228.77 21:50, 1. Jan. 2010 (CET)Beantworten

Für die Erklärung des Regenbogens wird nur die Lichtbrechung (abhängig von der Wellenlänge) und Reflexion benötigt. Mit dem Wellencharakter des Lichts kann auch die Lichtbrechung erklärt werden. Weshalb aber blaues Licht stärker als rotes gebrochen wird, ist nicht einfach zu verstehen. Hierfür werden Eigenschaften der Wassermoleküle benötigt. Die Erklärung würde hier zu weit führen.

Die Erklärung wieso rot und blau scheinbar in der Reihenfolge vertauscht sind, aber dann doch wieder nicht, finde ich auch reichlich wirr. 95.222.228.77 21:58, 1. Jan. 2010 (CET)Beantworten

Die Erklärung wird dadurch ziemlich wirr, dass eigentlich der falsche Winkel betrachtet wird. Die Sonnenstrahlen werden aus ihrer ursprünglichen Richtung nämlich nicht um 42 sondern um 180 - 42 = 138 Grad abgelenkt, für rotes Licht und für blaues 140 Grad. Jetzt passt es wieder, blaues Licht wird bei der Brechung mehr abgelenkt als rotes. Der Winkel zur Sonne ist also für rotes Licht minimal und erscheint daher höher über dem Horizont. Wenn die Ablenkung bei zwei Reflektionen größer als 180 Grad wird, kehren sich die Verhältnisse um. 95.222.228.77 11:27, 2. Jan. 2010 (CET)Beantworten

Mal ehrlich, versteht jemand die Erklärung im Artikel? Wieso beobachten wir einen Regenbogen? Warum gerade unter einem bestimmten Winkel? Warum entsteht kein Regenbogen beim Durchgang des Lichts wie in einem Prisma ohne Reflexion? 95.222.228.77 00:04, 2. Jan. 2010 (CET)Beantworten

Ich habe versucht eine verständliche Erklärung zu schreiben. 95.222.228.77 10:27, 2. Jan. 2010 (CET)Beantworten

Deine Erklärungen sind nicht nur falsch, sondern auch deine Schlussfolgerungen! Selbst, wenn die in Ordnung wären, wären sie am falschen Platz in dem Artikel. Bitte lass deine Edits im Artikel und stelle sie erst hier zur Diskussion! Du solltest auch erst ein paar Bücher(siehe Literaturangaben, gut sind zu Anfang Minneart, Vollmer und Schlegel) besorgen und durcharbeiten, bevor du die Aussagen im Artikel in Frage stellst! --Andys |  12:50, 2. Jan. 2010 (CET)Beantworten
Ich rate dir auch dringend einen Benutzernamen zu besorgen (dich zu registrieren) und so die persönliche Hilfe eines Mentors in Anspruch zu nehmen! --Andys |  13:08, 2. Jan. 2010 (CET)Beantworten
Was zur Zeit noch im Artikel steht ist jedenfalls Mist:
Das Lichtspektrum des Sonnenlichts ist ein winziger Teil des elektromagnetischen Spektrums und besteht aus elektromagnetischer Strahlung unterschiedlicher Wellenlänge. Bei hochstehender Sonne ist die natürliche Mischung der Strahlung am besten sichtbar, die dann als weißliches Tageslicht wahrgenommen wird. Bei tiefstehender Sonne ist die Mischfarbe rötlicher, da der kurzwellige blaue Anteil der Sonnenstrahlen in der Atmosphäre einer stärkeren Streuung unterliegt und Effekte wie das Morgenrot bedingt.
Nicht direkt falsch, hat aber mit dem Regenbogen eher wenig zu tun. Mit Messgeräten könnte eine Fortsetzung des Regenbogens im IR als auch im UV beobachtet werden. Der Rest des elektromagnetischen Spektrum ist hier irrelevant.
Die Ursache für die Entstehung der Farben und Buntheit des Regenbogens ist die Dispersion in einem Wassertropfen, also dessen Fähigkeit weißes Licht ähnlich einem Prisma (siehe rechts) wellenlängenabhängig unterschiedlich stark zu brechen. Regenbogenfarben sind jedoch im Unterschied zum Prisma selbst keine Spektralfarben, sondern resultieren aus der Interferenz und teilweisen Mischung der Lichtwellen innerhalb des Regenbogens und unterscheiden sich von der des Prismas[1].
"und Buntheit" ist Blödsinn. Die Formulierung "also dessen Fähigkeit weißes Licht ähnlich einem Prisma (siehe rechts) wellenlängenabhängig unterschiedlich stark zu brechen" kann verkürzt werden "also die wellenlängenabhängige Lichtbrechung ähnlich wie in einem Prisma (siehe rechts)". Das ist verständlicher und es geht nichts verloren. Der ganze Rest "Regenbogenfarben sind ..." ist totaler Quatsch.
Wenn während oder kurz nach einem Regenereignis Sonnenlicht auf eine Wand von Regentropfen fällt, wird das Licht in ihnen gebrochen und reflektiert. Da jeder Lichtstrahl auf eine andere Stelle des runden Regentropfens fällt, wird das parallele Sonnenlicht in einem Kegel zurückgeworfen, und zwar mit einem bevorzugten Streuwinkel von rund 41°, bedingt durch eine Kombination aus Brechung beim Eintritt in den Regentropfen und der Reflexion an dessen Rückwand. Da Sonnenlicht, wie oben dargelegt, unterschiedliche Wellenlängen besitzt, die im Regentropfen auch unterschiedlich stark gebrochen werden, ergibt sich für diese jeweils auch unterschiedliche maximale Streuwinkel, die etwas von den 41° abweichen. Das rote Licht weist einen maximalen Winkel von etwa 42° auf, das blaue Licht eher von 40°. Blickt der Beobachter nun zur Regenwand, so erscheinen ihm all jene Tropfen farbig, welche das Sonnenlicht im besagten Winkel genau auf sein Auge lenken. Der Regenbogen wird also nur sichtbar, wenn der Betrachter mit dem Rücken zur Sonne auf die Regenwand blickt, denn nur dann kann er in Richtung dieses Winkels schauen. Die Breite des Regenbogens entsteht durch die wellenlängenabhängige Auffächerung des Lichts, die kreisrunde Form des Regenbogens aber durch den konstanten Blickwinkel bezüglich der optischen Achse des Auges zum parallel einfallenden Sonnenlicht. Unser Auge kann nur bestimmte Frequenzen des Lichts wahrnehmen (380 bis 780 Nanometer (nm) Wellenlänge). Auch oberhalb der roten Farbe (z. B. Infrarot) und unterhalb der blauen Farbe (z. B. Ultraviolett) des Regenbogens sind „Farben“, die das menschliche Auge jedoch nicht wahrnehmen kann. Da der Brechungswinkel von der Wellenlänge abhängig ist, besitzen die verschiedenen Regenbogenfarben auch unterschiedliche Kreisdurchmesser. (nicht signierter Beitrag von RainbowA (Diskussion | Beiträge) 15:04, 2. Jan. 2010 (CET)) Beantworten
Jedenfals habe ich das belegt, im Gegenteil zu deinem Unsinn! Sollest du das löschen ist das zumindest Vandalismus! --Andys |  16:00, 2. Jan. 2010 (CET)Beantworten

Erklärung des Regenbogens in der Optik (?) -durchweg falsch und unverständlich

Der eingestellte Teil ist wegen folgender Mängel falsch bzw falsch plaziert: ((Auflistung nicht vollständig)

Beim Durchgang des Sonnenlichts aus einer bestimmten Richtung durch einen Tropfen wird das Licht zweimal,

Unsinn, da es egal ist aus welcher Richtung das Sonnenlicht durch den Tropfen (welchen Tropfen) geht, die Brechung ist unabhängig davon

beim Eintritt und beim Austritt gebrochen und eventuell ein oder mehrmals im Innern reflektiert.

bereits weiter unten klare beschrieben 8hier falsch am Platz)

Die Lichtbrechung führt zu einer Aufspaltung in die Spektralfarben wie bei einem Prisma.

Weiter untern erklärt

Ein Beobachter sieht aber meist keinen Regenbogen, wenn das Licht nicht im Innern des Tropfens unter einem bestimmten Winkel reflektiert wird.

Das licht wird nicht nur unter einem bestimmten Einfalls-Winkel immer reflektiert, jedenfalls hängt es davon nicht ab, ob der Beobachter den Regenbogen sieht.

Der Beobachter sieht an einer Stelle des Himmels mit Regentropfen nur Sonnenlicht,

Es sieht immer nur Sonnenlicht, ausser es besteht eine künstliche Energiequelle.

wenn es in dem genau passenden Winkel abgelenkt wird. Rotes Licht wird einem bestimmten Strahlengang schwächer gebrochen,

Nein es wird nicht nur in einem bestimmten Strahlengang schwächer gebrochen

aber eine schwächere Brechung kann auch durch einen Strahlengang näherer am Mittelpunkt eines kugelförmigen Tropfens für blaues Licht bewirkt werden.

Unsinn, das licht wird in diesem Betrachtungsmodell immer an der Öberfläche gebrochen und nicht näher am Mittelpunkt. 

Der Beobachter sieht an einer Stelle am Himmel daher alle Farben, die insgesamt weiß oder grau erscheinen.

etc. der Rest ist ebenso Unsinn Ich spar mir mal den ganzen Unsinn weiter zu zitieren. --Andys |  15:30, 2. Jan. 2010 (CET)Beantworten

mhm- ich mach noch ein Stück weiter, weils so lustig ist:

Bei einem Strahlengang mit einer Reflexion gibt es aber einen bevorzugten Winkel, bei dem das Licht minimal aus seiner ursprünglichen Richtung abgelenkt wird.

lol minimal abgelenkt -ich denke mal hier ist der Regenbogenwinkel gemeint (besser weiter unten erklärt - 42 Grad ist nicht minimal lol

Die minimale Ablenkung ist bevorzugt, weil sich der Winkel nur langsam mit dem Einfallswinkel ändert und folglich ein größerer Teil des Licht unter dem passenden Winkel das Auge des Betrachters erreicht.

minimale Ablenkung ist bevorzugt (herrliches Gerücht :) Belege fehlen natürlich), Rest in unverständlich, keine Ahnung was damit gemeint, dass sich ein grosser Teil des Lichts den Beobachter erreicht (Achtung Blendung möglich :) - Unsinn pur 

Die minimale Ablenkung ist bei rotem Licht kleiner als bei blauem.

Es gibt keine minimale Brechung (belege?)
Also es geht hier um die Ablenkung, also zwischen einfallendem Sonnenlicht und austretenden Strahl nach zweifacher Lichtbrechung und einer Reflexion. (nicht signierter Beitrag von RainbowA (Diskussion | Beiträge) 17:08, 2. Jan. 2010 (CET)) Beantworten

Dies ergibt sich aus einer Berechnung nach dem Refexions- und dem Brechungsgesetz für einen kugelförmigen Tropfen.

Wow , das ist mindestens ein Nobelpreis wert, bitte herleiten (belege?) - lol

etc blabla --Andys |  15:49, 2. Jan. 2010 (CET)Beantworten

Die Herleitung hast du mir ja immer wieder rausgeworfen. Die Sache mit dem Lot durch den Mittelpunkt des Kreises und dem gleichseitigen Dreieck. Sei x der Reflexionswinkel (halbe Öffnungswinkel zwischen einfallendem und reklektiertem Strahl). Punkt der Reflektion, Kreismittelpunkt und Punkt des Lichteintritts bilden ein gleichseitiges Dreieck. Daher ist der Winkel zum Lot bei der Brechung gleich x im Medium (hier Wasser n=1.33). Ausfallswinkel a = asin(1.33 * sin(x)). Der Öffnungswinkel zwischen einlaufendem Strahl und auslaufenden Strahl aus der Wasserkugel ist 2 * ( 2x - asin(1.33 * sin(x)) ). Der Wert ist kann Werte zwischen x = 0 und 45° annehmen. Mit einem kleinen Programm kann der Ablenkwinkel für alle Wert, etwa in ein Grad Schritten berechnet werden. Ergebnis: Der maximale Offnungswinkel (entspricht der minimalen Ablenkung) liegt bei 42 Grad. Alles klar? RainbowA 16:49, 2. Jan. 2010 (CET)Beantworten
Unter Ablenkung versteht man bei Snellius die Brechung, du versteht also darunter Brechung und Reflexion, aha, das ist zumindest WP:POV mit Einschlag WP:TF. maximaler Öffnungswinkel ist da schon klarer, ist aber besser bereits im Artikel erklärt. Der maximal Öffnungswinkel gilt auch nur für den Hauptbogen (siehe Artikelbeschreibung) Übrigens ist alles was zu da verzweifelst versuchst, besser bereits im Artikel erklärt! --Andys |  17:10, 2. Jan. 2010 (CET)Beantworten

Ich verstehe unter Ablenkung die Änderung der Richtung: Winkel zwischen auslaufendem Strahl und einlaufendem Strahl, egal was zwischendurch alles passiert und nur darauf kommt es letztlich an. Werde mal lesen, ob das wirklich alles schon im Artikel steht. RainbowA 17:29, 2. Jan. 2010 (CET)Beantworten

Die interessiert doch hier gar nicht, in keiner Literaturangabe wird darauf eingegangen (belege?), was hier auschlaggebend ist, ist der Regenbogenwinkel, der ein maximaler Öffnungswinkel ist. --Andys |  17:44, 2. Jan. 2010 (CET)Beantworten

Also zum Beispiel der Satz: "Blickt der Beobachter nun zur Regenwand, so erscheinen ihm all jene Tropfen farbig, welche das Sonnenlicht im besagten Winkel genau auf sein Auge lenken." Da kann ich ja nur den Kopf schütteln. Ein einzelner Tropfen erscheint entweder grau/weiß, wenn alle Farben von dem Tropfen ins Auge des Betrachters gelenkt werden oder zum Beispiel rot, wenn nur rotes Licht unter dem passenden Winkel abgelenkt wird. Licht das nicht ins Auge des Beobachters gelangt, kann er natürlich überhaupt nicht sehen. Der Beobachter sieht also nur jene Tropfen von denen Licht in sein Auge fällt. Im Regenbogen erscheint jeder Tropfen in einer bestimmten Farbe von rot bis violett, sonst wär es kein Regenbogen, sondern mehr oder minder graues Licht.

Lies mal Streuung_(Physik). RainbowA 17:58, 2. Jan. 2010 (CET)Beantworten

OK nach Mie/Airy [2] (siehe auch Mie-Streuung berechnet man auch den "deviation angle" (Ablenkungswinkel) , der ist dann z.B. bei dem Hauptbogen ~138 Grad und beim 1.Nebenbogen ~231 Grad, aber die Anschaulichkeit bleibt dabei auf der Strecke. Im Artikel geht es um eine qualitative Beschreibung, quantitative Herleitungen bringen für die Verständlichkeit gar nichts. Was hier interessiert ist der Regenbogenwinkel --Andys |  18:09, 2. Jan. 2010 (CET)Beantworten
Der Satz: "Blickt der Beobachter nun zur Regenwand, so erscheinen ihm all jene Tropfen farbig, welche das Sonnenlicht im besagten Winkel genau auf sein Auge lenken." bringt genau das einfach zum Ausdruck, was du oben dann in deiner unverständlichen Art versucht hast zu erklären, Welche Tropfen weiß/grau erscheinen ist hier irrelevant, es geht primär um den Regenbogen --Andys |  18:25, 2. Jan. 2010 (CET)Beantworten

Das Regenbogenprogramm

Ich fasse es ja nicht. Es gibt tatsächlich Leute die verfassen heute noch ganze wissenschaftliche Arbeiten zur Optik des Regenbogens. Dabei ist der Regenbogen doch recht einfach zu erklären, mit den Brechungsgesetz und dem Reflexionsgesetz. Ja, ganz elementare Optik, ganz ohne Interferenz und so was. Ich schenke euch mal mein Regenbogenprogramm zur Berechnung des Regenbogenwinkels. Da könnt ihr sehen, dass tatsächlich ziemlich genau der Regenbogenwinkel dabei herauskommt, obwohl echte Regentropfen sicher keine exakten Wasserkugeln sind.


#include <stdio.h>

#include <math.h>

double rw (double x, double n){

       return 2 * (2*x - asin(n*sin(x)));

} main(){

float x;
float n = 1.33;
float xmax = 0;
float rwmax = rw(0,n);
for (x=0;x<0.7;x+=0.01){
   printf("%f %f\n",x,rw(x,n));
   if (rw(x,n) > rwmax) {
      rwmax = rw(x,n);
      xmax = x;
   }
}
printf("\n\n rogenbogenwinkel = %5.2f \n", 180.0*rwmax/(4.0*atan(1.0)) );

} (nicht signierter Beitrag von RainbowA (Diskussion | Beiträge) 19:16, 2. Jan. 2010 (CET)) Beantworten

Toll, dass du wenigstens C Programmieren kannst, dass da der Regenbogenwinkel rauskommt ist um so verwunderlich. Die sichtbaren Phänomene bei der Beobachtung des Regenbogens, erschließt sich nur dem geneigten Leser. Ich benutze matlab, da sieht man schön den maximalen Winkelwert der auch nach Airy und Mie, ganz ohne programmieren --Andys |  19:23, 2. Jan. 2010 (CET)Beantworten
Schau dir mal http://www.armchair.com/sci/rainbow.html an. Dort sind nur die Winkel etwas anders benannt als ich es gemacht habe. Theta-Strich ist bei mir x und Theta als asin(n*sin(x)) berechnet. Jetzt kannst du erkennen, dass die Formel (1) genau mit meiner Formel übereinstimmt. Ich habe den Winkel nicht als Funktion von Theta sondern als Funktion Theta-Strich berechnet. Ist aber auch wurscht. Es ist also kein Wunder, dass ich am Ende den gleichen Winkel erhalte. RainbowA 13:52, 3. Jan. 2010 (CET)Beantworten
Dass der Regenbogenwinkel dabei herauskommt, ist ja kein Zufall. Meine Überlegungen mit dem gleichseitigen Dreieck, dem Lot durch den Kreismittelpunkt, … sind dann wohl nicht so ganz verkehrt. Daher stimmt es auch, dass der Regenbogen ganz ohne Interferenzen und Wellenoptik berechnet werden kann. Die Eigenschaften des Regenbogens lassen sich damit wunderbar erklären. Die vielen Nebenbögen nach Airy und Mie sind aber wohl nicht so ganz mit der Beobachtung in Einklang zu bringen. RainbowA 19:47, 2. Jan. 2010 (CET)Beantworten
Die Nebenbögen etc. sind nicht mit der deinem Programm, wohl aber sicher mit der Beobachtung in Einklang zu bringen. --Andys |  19:50, 2. Jan. 2010 (CET)Beantworten
Das Programm berechnet, in der derzeitigen Fassung ausschließlich den Fall einer Reflexion. Aber in analoger Weise ließe sich sicher eine Formel für die Ablenkung bei zwei Reflexionen ableiten, wobei ein Winkel variiert wird, so dass der Ablenkwinkel minimal wird. Aber du kannst ja mal selbst so ein Programm entwickeln mit matlab oder so. --RainbowA 20:23, 2. Jan. 2010 (CET)Beantworten
Der Punkt ist doch, dass das Programm und die Formal für den Artikel herzlich irrelevant ist. Hier kommt auf leichte Verständlichkeit, Vollständigkeit und Korrektheit an. Alle drei Anforderungen waren bei deinen Beiträgen auch nicht im Ansatz vorhanden. --Andys |  20:39, 2. Jan. 2010 (CET)Beantworten
Ich habe auch noch den Strahlengang für zwei Reflexionen durchgerechnet. Die Ablenkung errechnet sich dort als 2*(3x - pi/2 - asin(1,33*sin(x))). Damit errechnen sich die Regenbogenwinkel mit einem wie im Artikel angegeben. RainbowA 10:04, 3. Jan. 2010 (CET)Beantworten

Die Berechnungen von Airy und Mie zum Regenbogen sind Mist. Die Größe der Tropfen spielt beim Regenbogen gar keine Rolle. Dies ist ganz einfach zu verstehen, weil nur der Ablenkwinkel zwischen einlaufendem und auslaufendem Strahl wichtig ist. Eine Vergrößerung des Tropfens spielt somit keine Rolle. Das Verhältnis von Tropfengröße und Wellenlänge ist daher auch vollständig irrelevant. Der Regenbogen erklärt sich allein aus dem Reflexions und Brechungsgesetz. Interferenzen spielen dabei keine Rolle. RainbowA 10:15, 3. Jan. 2010 (CET)Beantworten

Es ist unerheblich was du denkst was Mist ist --Andys |  12:13, 3. Jan. 2010 (CET)Beantworten
Es ist auch aus einem anderen Grund klar, dass die Tropfengröße keine Rolle spielt. Wäre die Ablenkung von der Größe abhängig, dann würde der Regenbogen je nach Tropfengröße immer an einer anderen Stelle erscheinen. Wenn die Tropfengröße variiert, würden sich verschiedene bunte Regenbögen zu einem grauen überlagern. RainbowA 12:30, 3. Jan. 2010 (CET)Beantworten

Bitte löscht den Mist

Regenbogenfarben sind jedoch im Unterschied zum Prisma selbst keine Spektralfarben, sondern resultieren aus der Interferenz und teilweisen Mischung der Lichtwellen innerhalb des Regenbogens und unterscheiden sich von der des Prismas[1].

{{Löschen}} Versteht kein Mensch und ist auch schlicht falsch. Die Entstehung des Regenbogen hat nichts mit Interferenz zu tun. Zur Erklärung wird nur das Brechungsgesetz (wellenlängenabhängig) und das Reflexionsgesetz benötigt. Da die Tropfengröße offensichtlich keinen Einfluss hat, kann es gar keine Interferenz sein, die zum Regenbogen führt. RainbowA 15:02, 3. Jan. 2010 (CET)Beantworten

Allerings doch, siehe Referenzen und Wellendarstellungsbildd weiter unten --Andys |  15:06, 3. Jan. 2010 (CET)Beantworten
Die Tröpfchengrösse hat schon Einfluss auch der Stand der Sonne, steht alles im Artikel und ist durch die Literaturangaben ausreichend belegt. --Andys |  15:12, 3. Jan. 2010 (CET)Beantworten
Klar, auch in der Literatur findet sich jede Menge Mist. Ich habe es doch schon mal erklärt. Interferenzen könnten nur das Aussehen eines einzelnen Tropfen erklären. Etwa ein Tropfen mit Ölfilm sieht farbig aus. Aber eine Stelle am Himmel im Regenbogen erscheint eben nicht in verschiedenen Farben, sondern in einer bestimmten Farbe zum Beispeil rot oder blau. Wenn es zu einer Überlagerung verschiednener Bögen kommt, ist dies keine Interferenz im Sinne der Optik, weil dor Intensiäten und keine Amplituden addiert werden. RainbowA 15:19, 3. Jan. 2010 (CET)Beantworten
Es ist unwichtig was du für richtig hältst, sondern was hier die anerkannten Experten sagen (siehe Referenzen), auch die Arbeiten von Mie und Airy. Du kannst hier noch beliebig lang herumlamentieren, deine POV Meinung zählt hier nicht--Andys |  15:28, 3. Jan. 2010 (CET)Beantworten

Ok, dann lasst es mal so stehen. Es tut ja keinem weh. Ich stelle aber meine sicher halbwegs verständliche Erklärung hier rein, damit auch jemand nachlesen kann warum der Regenbogen wirklich entsteht. (nicht signierter Beitrag von RainbowA (Diskussion | Beiträge) 16:21, 3. Jan. 2010 (CET)) Beantworten

Erklärung des Regenbogens in der Optik (Vorschlag von Benutzer RainbowA)

Farbzerlegung des Sonnenlichts durch ein Prisma (qualitativ)

Beim Durchgang des Sonnenlichts durch einen Tropfen wird das Licht zweimal, beim Eintritt und beim Austritt gebrochen und eventuell ein oder mehrmals im Innern reflektiert. Die Lichtbrechung führt zu einer Aufspaltung in die Spektralfarben wie bei einem Prisma. Ein Beobachter sieht aber meist keinen Regenbogen, es sei denn das Licht wird im Innern des Tropfens unter einem bestimmten Winkel reflektiert. Der Beobachter sieht an einer Stelle des Himmels von Regentropfen abgelenktes Sonnenlicht, wenn es im genau passenden Winkel abgelenkt wird. Rotes Licht wird bei einem bestimmten Strahlengang schwächer gebrochen, aber eine schwächere Brechung kann auch durch einen Strahlengang näherer am Mittelpunkt eines kugelförmigen Tropfens für blaues Licht bewirkt werden. Der Beobachter sieht an einer Stelle am Himmel daher alle Farben, die insgesamt weiß oder grau erscheinen.

Bei einem Strahlengang mit einer Reflexion gibt es aber einen bevorzugten Winkel, bei dem das Licht minimal aus seiner ursprünglichen Richtung abgelenkt wird. Die minimale Ablenkung ist bevorzugt, weil sich der Winkel nur langsam mit dem Einfallswinkel ändert und folglich ein größerer Teil des Licht unter dem passenden Winkel das Auge des Betrachters erreicht. Die minimale Ablenkung ist bei rotem Licht kleiner als bei blauem. Dies ergibt sich aus einer Berechnung nach dem Refexions- und dem Brechungsgesetz für einen kugelförmigen Tropfen. Bei minimalem Winkel, etwa 180° minus 42° also 138° für rotes Licht erscheint der Tropfen tatsächlich rot, weil blaues Licht, das mindestens 140° abgelenkt wird, nicht unter diesem Winkel abgelenkt werden kann, also das Auge des Betrachters nicht erreicht. Die Sonne darf nur 42° über dem Horizont stehen, weil sonst die Ablenkung plus dem Sonnenstand größer 180° wird und der Regenbogen unter dem Horizont verschwindet. Es gibt aber Regenbögen die aus mehreren Reflexionen resultieren. Hier werden größere Winkel erreicht. Wenn der Beobachter von einem Berg ins Tal blickt kann er auch bei höherem Sonnenstand einen Regenbogen sehen. Da bei der Reflexion keine Totalreflexion auftritt, ist der Reflexionsgrad von der Polarisation abhängig. Das Licht des Regenbogens ist daher polarisiert.

Die Größe der Tropfen ist nicht entscheidend, da es nur auf die Ablenkung also die Änderung des Winkels ankommt. Eine Vergrößerung oder Verkleinerung hat darauf keinen Einfluss.


Spektralfarben eines Prismas (oberer Streifen) und berechnete Regenbogenfarben (unterer Streifen) unter Berücksichtigung aller Interferenzeffekte. Der mittlere Streifen ist die reale Beobachtung eines Regenbogenausschnittes.

RainbowA 16:21, 3. Jan. 2010 (CET)Beantworten

OK, das meiste alles falsch (siehe meine Kommentare oben), ich denke ich muss mich hier nicht wiederholen. Die richtigen Information stehen bereits besser erklärt im Artikel. --Andys |  16:27, 3. Jan. 2010 (CET)Beantworten

Weitere Nebenbögen?

Im Artikel wird nur der Nebenbogen der aus zwei Reflexionen resultiert behandelt. Es gibt aber mindestens theoretisch noch Nebenbögen mit drei, vier, fünf oder mehr Reflexionen. Die Intensität wird sicherlich geringer und eine Beobachtung schwerer. Trotzdem könnte die Lage der Winkel berechnet werden. Die Richtungsänderung bei der Lichtbrechung (Theta - Theta-Strich) und bei der Reflexion (Pi - 2*Theta-Strich). Die gesamte Ablenkung bei k Reflexionen ist also 2 * (Theta - Theta-Strich) + k * (Pi - 2*Theta-Strich) = k*pi + 2 Theta - 2*(k+1) Theta-Strich. RainbowA 18:16, 3. Jan. 2010 (CET)Beantworten

Ist entsprechend behandelt unter Nebenbögen. --Andys |  18:49, 3. Jan. 2010 (CET)Beantworten

Ok, das ist im Artikel erwähnt. Aber explizit und genauer wird nur der Fall von zwei Reflexionen betrachtet. Interessant sind aber gerade auch die „Nebenbögen“ für 3 oder 4 Reflexionen, die im Gegensatz zu den ersten beiden nicht gegenüber der Sonne, sondern neben der Sonne im Abstand kleiner 50° erscheinen. Bei drei Reflexionen erscheint der Innere Kreisbogen blau. Ich habe in der Wikipedia schon Bildern mit Regenbögen gefunden, die offenbar aus drei Reflexionen resultieren. Aber offenbar will hier niemand einsehen, dass es solche Regenbögen gibt, obgleich sie ja bereits im 19. Jahrhundert detailiert beschrieben und sogar wissenschaftlich korrekt erklärt wurden. Die Geschichte mit dem Helligkeitskontrast beim Hauptbogen und dem dunklen Band ist eindeutig Blödsinn und nicht einmal mit Quellenangaben belegt. Im Innern des hellen Bogens ist doch eindeutig die Landschaft hinter dem Bogen (kein Speigelbild) erkennbar. Es handelt sich daher nicht um in den Wassertropfen reflektiertes Licht. Der starke Kontrast kann daher nicht erklärt werden. Das entsprechende Bild, ist offenbar manipuliert worden. --95.222.228.77 10:22, 12. Jan. 2010 (CET)Beantworten

Bedingung für Maximum der Intensität

Ein Maximum der Intensität tritt auf, wenn sich der Ablenkwinkel als Funktion des Einfallswinkel in erster Näherung nicht ändert. Dies ist der Fall, wenn die Ableitung, siehe Differentialrechnung, des Ablenkwinkels nach dem Einfallswinkel null wird.

Dies führt zu der Bedingung

Dabei ist die Brechzahl n eine Funktion der Wellenlänge . Maxima treten für die Werte k = 1, 2, 3, … auf. Für k=0 (keine Reflexion) tritt kein Maximum auf.

Bemerkung: Für große Werte von k nähert sich der Wert der Sinusfunktion eins an. Der Einfallswinkel nähert sich damit 90° und der Aufalls- und Reflexionswinkel dem Grenzwinkel für Totalreflexion. Die Ablenkwinkel aufeinander folgende Maxima unterscheiden sich damit etwa um den doppelten Grenzwinkel.

--RainbowA 20:44, 7. Jan. 2010 (CET)Beantworten

Bitte hier keine Theoriefindung oder Abgeschriebenes zur quantitaiven Erruierung. Sicherlich nicht OMA-tauglich und somit auch aus diesem Gesichtspunkt nicht sinnvoll für den Artikel! --Andys |  21:11, 7. Jan. 2010 (CET)Beantworten

Zirkumzenitalbogen

Steht das Bild auf dem Kopf? Wo steht da die Sonne? RainbowA 10:49, 4. Jan. 2010 (CET)Beantworten

Ja und überhaupt, die ganzen Photos kommen mir extrem seltsam vor. Das Photo aus Alaska zum Beispiel. Ein tatal gleichmäßiger Bogen, teilweise mit blauem Himmel im Hintergrund. Damit ein Regenbogen entsteht braucht es doch nicht nur Sonne sondern auch Regen. Sollte der Regen etwa ganz gleichmäßig über den ganzen Bogen verteilt sein? Mir kommt das Bild getürkt vor. Dann das Bild in Melborne. Hier kommt mir vor allem der extrem Helligkeitsunterschied zwischen dem Bereich innerhalb des Hauptbogens und außerhalb sehr seltsam vor. Ok, die Theorie sagt, das Licht wird in einen Kegel bis zu einem Maximalwinkel zurückgeworfen. Aber das ist doch nicht das gesamte Licht. Es gibt da ja noch Licht das von der Luft gestreut wird (Himmelblau) und Licht das in ander Weise von den Tropfen reflektiert wird, zum Beispiel direkt ohne in den Tropfen einzudringen oder nach mehreren Reflexionen. Also ehrlich, die Bilder sind doch fast alle getürkt. RainbowA 12:35, 5. Jan. 2010 (CET)Beantworten

Bevor Du hier jemanden beschuldigst, mache Dir erstmal die Mühe auf der Seiten dieser Bilder unter "Dateiverwendung" nachzuschauen. Da sieht man dann ganz leicht, dass dieses Bild schonmal diskutiert wurde und ich mich auch schonmal dazu geäußert habe, genauer, hier: Wikipedia:Auskunft/Archiv/2009/Woche_26#Regenbogen.3F. Aber, bitte, bitte, bevor ich das monatlich erklären muss, weil wieder ein Schlaumeier daherkommt und meint alles besser zu wissen oder wenn die kleinen Ergänzungen in den Ecken dem Herrn nicht genehm sind, können wir das Bild auch einfach löschen. Oder lad das Bild doch einfach mal runter und schau Dir das Farbhistogram an, dann siehst Du auch ganz schnell, dass da nichts "getürkt" sein kann. Typen wie Du, die ohne irgendetwas sinnvolles beizutragen sich nur auf Diskussionen herumtreiben, für Löschungen argumentieren und sich ansonsten die nächste Hausarbeit erklären lassen wollen, gibt es seit ca. zwei Jahren bei Wikipedia ohnehin zu viele und sind der Grund, warum ich kaum mehr etwas mache. - AlterVista 17:39, 5. Jan. 2010 (CET)Beantworten

Wissenschaftlich Erklärung

Einem bestimmten Benutzer scheint mein Versuch, eine wissenschaftlich Erklärung zu formulieren nicht zu gefallen. Ok, dann nehmt doch die Erklärung aus der englischen Version von Wikipedia. Ich denke die ist ziemlich korrekt. Etwas anders aufgebaut als mein Ansatz, aber im Prinzip läuft es auf das Gleiche hinaus. Eine deutsche Übersetzung wäre also nicht schlecht, wenn sich jemand die Mühe machen könnte. Der interssierte Leser kann die Seite natürlich auch von Google übersetzen lassen. RainbowA 13:47, 5. Jan. 2010 (CET)Beantworten

http://en.wikipedia.org/wiki/Rainbow#Scientific_explanation

RainbowA 13:47, 5. Jan. 2010 (CET)Beantworten

Ok, beim genaueren Lesen erscheint mir da doch einiges seltsam geschwurbelt. Aber der Anfang ist nicht schlecht. Eigenlich steht da alles Wesentliche.

The light is first refracted as it enters the surface of the raindrop, reflected off the back of the drop, and again refracted as it leaves the drop. The overall effect is that the incoming light is reflected back over a wide range of angles, with the most intense light at an angle of 40°–42°. The angle is independent of the size of the drop, but does depend on its refractive index.
Das Licht wird zunächst gebrochen, wenn es durch die Oberfläche des Regentropfens eintritt, von der Rückseite reflektiert und erneut beim Austritt aus dem Tropfen gebrochen. Der Effekt ist insgesamt, dass Licht in einen breiten Winkelbereich reflektiert wird, wobei das hellste Licht unter einem Winkel von 40°–42° zurüchgeworfen wird. Der Winkel hängt nicht von der Größe des Tropfens, aber von seiner Brechzahl ab. RainbowA 14:08, 5. Jan. 2010 (CET)Beantworten
Gefällt mir nicht hundertprozentig, neuer Textvorschlag:
Das Licht wird zunächst gebrochen, wenn es in den Regentropfens eintritt. Es wird anschließend von der Rückseite reflektiert und schließlich beim Austritt aus dem Tropfen erneut gebrochen. Der Effekt ist insgesamt, dass Licht in einen breiten Winkelbereich reflektiert wird, wobei das hellste Licht unter einem bestimmten Winkel zurüchgeworfen wird. Der Winkel hängt nicht von der Größe des Tropfens, aber von seiner Brechzahl und damit von der Wellenlänge ab. Die gesamte Ablenkung aus der ursprünglichen Richtung des einfallenden Sonnenlicht beträgt für rotes Licht etwa 138° und für blaues 140°, so dass der Öffnungswinkel zwischen ein- und auslaufendem Strahl zwischen 42° (rot) und 40° (blau) liegt. RainbowA 14:08, 5. Jan. 2010 (CET)Beantworten

Die genauere Erklärung ist in dem Kapitel Reflexionscharakteristik, Brechung und Dispersion am Wassertropfen bereits besser beschrieben. Die obige von dir veränderte Version aus der engl. WP ist zwar kürzer beleuchtet, aber zu wenige Aspekte des Regenbogens. Das Kapitel davor Charakter des Sonnenlichts und Zusammenfassung der Regenbogenentstehung ist die Zusammenfassung der Optik des Regenbogens, bei der Brechung, Relexion und Interferenz eine Rolle spielen. Keine Notwendigkeit also dies zu ändern, oder steht irgendwas falsches drin? --Andys |  16:18, 5. Jan. 2010 (CET)Beantworten

In diversen Erklärungen zum Regenbogen ist von einem Kegel die Rede in den das Licht hineingestreut wird. Jetzt ist die Frage, welchen Öffnungswinkel hat (für den Hauptbogen) der Kegel. Ich denke 84° und nicht 42° wie gelegentlich zu lesen. Warum - weil die 42° der Winkel zur Richtung der „Gegensonne“ ist. Der Öffnungswinkel des Kegels ist doppelt so groß. Ich persönlich finde es viel logischer den Winkel anzugeben, zwischen einfallender Sonnenstrahlung und aus dem Tropfen auflaufendem Strahl. Das sind 180° - 42° = 138°. Damit leuchtet auch unmittelbar ein, dass für blaues Licht, welches stärker gebrochen wird, dieser Winkel größer ist (140° = 180° - 40°). Es ist dann nicht notwendig mit einer imaginären Gegensonne zu argumentieren. --RainbowA 10:34, 7. Jan. 2010 (CET)Beantworten
Der Öffnungswinkels des Kegels mit dem Sonnengegenpunkt auf der optischen Achse wird beim Regenbogen auch Regenbogenwinkel genannt. Ich verstehe deinen Einwand, denn der Öffnungswinkel in der Fotographie wird für eine Linse anders definiert. Allerdings ist der Öffnungswinkel in der Literatur für den Regenbogen als Regenbogenwinkel beschrieben, siehe z.B. [3] von hier, [4] oder die Bücher in der Literaturangabe. Ich werde dem aber nochmal genauer nachgehen, dein Einwand macht hier Sinn!
Zum Ablenkwinkel: Der Winkel wird in der Literatur (siehe Literaturangaben) ebenfalls nicht zur Darstellung des Phänomens benutzt. Es wird nur immer von dem Regenbogenwinkel gesprochen, wahrscheinlich aus didatischen Gründen und da dies nur für den Hauptregenbogen vielleicht noch sinnvoll wäre. Für die Erklärung des 1. Nebenbogen ist der Ablenkwinkel nicht mehr sinnvoll zu benutzen, deswegen wegen der Einheitlichkeit ist es besser bei dem Öffnungswinkel zu bleiben. --Andys |  11:26, 7. Jan. 2010 (CET)Beantworten
Michael Vollmer nennt in seinem Buch Lichtspiele in der Luft (1. Auflage 2006) im Kapitel 5.2 Beobachtungen zum Regenbogen S.109ff den Winkelabstand alpha=42° von der Achse Beobachter-Sonnengegenpunkt zum Kegelmantel als Öffungswinkel des Regenbogens, wiederholt auf nachfolgenden Seiten. Marcel Minnaert in seinem Buch Licht und Farbe der Natur als halben Öffnungswinkel. Habe eine Anfrage an Prof. Vollmer gestartet. --Andys |  18:00, 7. Jan. 2010 (CET)Beantworten
Rückantworten erhalten. Bestätigz: Regenbogenwinkel = halber Öffnungswinkel (wird entsprechend im Artikel korrigiert) Die Referenzen im Artikel wurden bereits von den verantworlichen Personen korrigiert. --Andys |  16:35, 8. Jan. 2010 (CET)Beantworten