Hexatriin

Strukturformel
Strukturformel von Hexatriin
Allgemeines
Name Hexatriin
Andere Namen
  • Hexa-1,3,5-triin
  • Triacetylen
Summenformel C6H2
Externe Identifikatoren/Datenbanken
CAS-Nummer 3161-99-7
PubChem 137843
ChemSpider 121493
Wikidata Q27108461
Eigenschaften
Molare Masse 74,08 g·mol−1
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung
keine Einstufung verfügbar[1]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Hexatriin ist ein Alkin, ein Polyin, mit drei Dreifachbindungen.

Vorkommen

Der Pilz Fomes annosus bildet flüchtiges Hexatriin

Hexatriin wird von dem Pilz Fomes annosus gebildet.[2][3][4]

Hexatriin wurde im protoplanetaren Nebel CRL 618 nachgewiesen.[5] Es wird auch vermutet, dass Hexatriin eine wichtige Rolle in der Atmosphärenchemie des Saturnmondes Titan spielt.[6][7]

Es tritt außerdem in Nanopartikeln in Verbrennerabgasen auf.[8]

Darstellung

Ein Gemisch von Hexatriin mit längeren Polyinen kann durch Bestrahlung von Graphit mit einem Laser (Yttrium-Aluminium-Granat dotiert mit Neodym, 532 nm) unter einer Propan/Argon-Atmosphäre gewonnen werden. Das Produkt kann dabei in einem Lösungsmittel aufgefangen werden.[9] Mehrere andere Methoden, die auf der Bestrahlung von Graphit mit Lasern basieren, wurden ebenfalls beschrieben.[10][11]

Polyine können auch durch Erzeugung eines Lichtbogens zwischen Graphit- oder Titanelektroden in Hexan erzeugt werden. Hierbei entsteht allerdings als Hauptprodukt Octatetrain und nur etwa 20 % Hexatriin.[12]

Eigenschaften

Hexatriin ist bei Raumtemperatur sehr instabil und kann sich explosiv zersetzen. Es muss daher stark gekühlt, in starker Verdünnung oder in einem inerten Lösungsmittel (z. B: Diethylether oder Pentan) aufbewahrt werden.[3] Es polymerisiert langsam bei −20 °C, aber schnell bei Raumtemperatur an der Luft zu einem reibungsempfindlichen, explosiven Feststoff, wahrscheinlich ein Peroxid. Obwohl es unter Vakuum bei −5 °C für eine begrenzte Zeit stabil ist, führte die Exposition bei 0 °C an Luft bald darauf zu heftigen Explosionen.[13] Es ist instabil unter Licht bei Temperaturen über −196 °C.[14]

In Studien konnte Hexatriin die Keimung von Kressesamen inhibieren und wirkte fungizid gegen Aspergillus niger und andere Pilze.[2][3]

Einzelnachweise

  1. Dieser Stoff wurde in Bezug auf seine Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  2. a b S A Hutchinson: Biological Activities of Volatile Fungal Metabolites. In: Annual Review of Phytopathology. Band 11, Nr. 1, September 1973, S. 223–246, doi:10.1146/annurev.py.11.090173.001255.
  3. a b c A.T. Glen, S.A. Hutchinson: Contribution of triacetylene to the biological effects of Fomes annosus. In: Transactions of the British Mycological Society. Band 61, Nr. 3, Dezember 1973, S. 583–585, doi:10.1016/S0007-1536(73)80127-5.
  4. A.T. Glen, S.A. Hutchinson, N.J. McCorkindale: Hexa-1, 3, 5-triyne - a metabolite of. In: Tetrahedron Letters. Band 7, Nr. 35, Januar 1966, S. 4223–4225, doi:10.1016/S0040-4039(00)76040-0.
  5. José Cernicharo, Ana M. Heras, A. G. G. M. Tielens, Juan R. Pardo, Fabrice Herpin, Michel Guélin, L. B. F. M. Waters: Infrared Space Observatory's Discovery of C4H2, C6H2, and Benzene in CRL 618. In: The Astrophysical Journal. Band 546, Nr. 2, 10. Januar 2001, S. L123–L126, doi:10.1086/318871.
  6. C. Delpech, J.C. Guillemin, P. Paillous, M. Khlifi, P. Bruston, F. Raulin: Infrared spectra of triacetylene in the 4000-220 cm−1 region: Absolute band intensity and implications for the atmosphere of Titan. In: Spectrochimica Acta Part A: Molecular Spectroscopy. Band 50, Nr. 6, Juni 1994, S. 1095–1100, doi:10.1016/0584-8539(94)80031-6.
  7. F. Shindo, Y. Benilan, J.-C. Guillemin, P. Chaquin, A. Jolly, F. Raulin: Ultraviolet and infrared spectrum of C6H2 revisited and vapor pressure curve in Titan's atmosphere. In: Planetary and Space Science. Band 51, Nr. 1, Januar 2003, S. 9–17, doi:10.1016/S0032-0633(02)00151-4.
  8. Yoko Nunome, Kenji Kodama, Hyunkook Park, Kozo Matsumoto, Sang Chun Lee, Kuniyuki Kitagawa: Direct detection of nanoparticles and components in smoke by time-of-flight mass spectrometry with soft plasma ionization. In: Microchemical Journal. Band 99, Nr. 2, November 2011, S. 470–477, doi:10.1016/j.microc.2011.06.025.
  9. Y. Taguchi, H. Endo, Y. Abe, J. Matsumoto, T. Wakabayashi, T. Kodama, Y. Achiba, H. Shiromaru: Polyyne formation by graphite laser ablation in argon and propane mixed gases. In: Carbon. Band 94, November 2015, S. 124–128, doi:10.1016/j.carbon.2015.06.058.
  10. Seung Keun Shin, Jae Kyu Song, Seung Min Park: Preparation of polyynes by laser ablation of graphite in aqueous media. In: Applied Surface Science. Band 257, Nr. 12, April 2011, S. 5156–5158, doi:10.1016/j.apsusc.2010.10.074.
  11. Masaharu Tsuji, Takeshi Tsuji, Shingo Kuboyama, Seong-Ho Yoon, Yozo Korai, Teppei Tsujimoto, Kanji Kubo, Akira Mori, Isao Mochida: Formation of hydrogen-capped polyynes by laser ablation of graphite particles suspended in solution. In: Chemical Physics Letters. Band 355, Nr. 1-2, März 2002, S. 101–108, doi:10.1016/S0009-2614(02)00192-6.
  12. Franco Cataldo: Polyynes and cyanopolyynes synthesis from the submerged electric arc: about the role played by the electrodes and solvents in polyynes formation. In: Tetrahedron. Band 60, Nr. 19, Mai 2004, S. 4265–4274, doi:10.1016/j.tet.2004.03.033.
  13. Peter Urben: Bretherick's Handbook of Reactive Chemical Hazards. 8. Auflage. Elsevier, 2017, ISBN 978-0-08-101059-4, S. 428 (eingeschränkte Vorschau in der Google-Buchsuche).
  14. Dictionary of Organic Compounds. 6. Auflage. Band 4. Chapman & Hall, 1996, ISBN 0-412-54090-8, S. 3521 (eingeschränkte Vorschau in der Google-Buchsuche).