„Biogasanlage“ – Versionsunterschied

[gesichtete Version][ungesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
K Änderungen von 80.142.68.116 (Diskussion) rückgängig gemacht und letzte Version von Numbo3-bot wiederhergestellt
Zeile 59: Zeile 59:


Domäne der Trockenfermentation ist der [[Mähen|Grünschnitt]], wie er im [[Garten- und Landschaftsbau]] anfällt sowie die Vergärung von Wiesen- oder Ackergras. Trockenfermentation wird auch als Ergänzung oder Ersatz zur [[Kompostierung]] eingesetzt. Anders als die Bezeichnung "Trockenvergärung" vermuten lässt, sind auch stark wasserhaltige Substrate wie [[Silage]] zur Trockenvergärung geeignet. Seit 2004 wurde im Rahmen des [[Erneuerbare-Energien-Gesetz]]es (EEG) ein [[Technologiebonus]] von 2 Cent/kWh eingespeisten Strom für die Trockenfermentation bezahlt. In den folgenden Jahren nahm daher auch in der Landwirtschaft die Bedeutung der Trockenfermentation stark zu. Für neu errichtete Anlagen ab 2009 entfällt der Technologiebonus, da das Verfahren inzwischen als etablierte Technik gilt.
Domäne der Trockenfermentation ist der [[Mähen|Grünschnitt]], wie er im [[Garten- und Landschaftsbau]] anfällt sowie die Vergärung von Wiesen- oder Ackergras. Trockenfermentation wird auch als Ergänzung oder Ersatz zur [[Kompostierung]] eingesetzt. Anders als die Bezeichnung "Trockenvergärung" vermuten lässt, sind auch stark wasserhaltige Substrate wie [[Silage]] zur Trockenvergärung geeignet. Seit 2004 wurde im Rahmen des [[Erneuerbare-Energien-Gesetz]]es (EEG) ein [[Technologiebonus]] von 2 Cent/kWh eingespeisten Strom für die Trockenfermentation bezahlt. In den folgenden Jahren nahm daher auch in der Landwirtschaft die Bedeutung der Trockenfermentation stark zu. Für neu errichtete Anlagen ab 2009 entfällt der Technologiebonus, da das Verfahren inzwischen als etablierte Technik gilt.



MAX HALTS MAUL MAN :D:D:D HHAHA ICH GEB DIR GLEICH SONE SCHEISSE UEBER MICH LABERN ICH BOX DICH UM MUHAAAAAAAAAAAAAAAAA DU ARSCHGESICHT UND DENK DRAN DU DARFS NICHT JA ODER NEIN SAGEN !!!!!!!!


=== Ein- und mehrstufige Anlagen ===
=== Ein- und mehrstufige Anlagen ===

Version vom 11. November 2009, 13:48 Uhr

Biogasanlage in Neuhaus (Oste)
Biogasfermenter einer Mechanisch-Biologischen Abfallverwertung in Tel Aviv/ Israel

Eine Biogasanlage dient der Erzeugung von Biogas durch Vergärung von Biomasse. In landwirtschaftlichen Biogasanlagen vergoren wird meist Gülle und Pflanzensilage als Substrat eingesetzt. Als Nebenprodukt wird ein als Gärrest bezeichneter Dünger produziert. Bei den meisten Biogasanlagen wird das entstandene Gas vor Ort in einem Blockheizkraftwerk (BHKW) zur Strom- und Wärmeerzeugung genutzt.

Prinzip einer Biogasanlage

Vergleich von Biogasrohstoffen[1]
Material Biogasertrag
in m3 pro Tonne
Frischmasse
Methan-
gehalt
Maissilage 202 52 %
Grassilage 172 54 %
Roggen-GPS 163 52 %
Zuckerrüben-
Pressschnitzel
siliert
[2]
125 52 %
Futterrübe 111 51 %
Bioabfall 100 61 %
Hühnermist 80 60 %
Schweinemist 60 60 %
Rindermist 45 60 %
Getreideschlempe 40 61 %
Schweinegülle 28 65 %
Rindergülle 25 60 %

In einer Biogasanlage erfolgt der anaerobe mikrobielle Abbau (Vergärung) des eingesetzten Substrats. Dieses besteht meist aus gut abbaubarer Biomasse wie Gülle, Silage (vor allem Maissilage) oder Bioabfall. Stroh und Holz, die vor allem Cellulose und Lignocellulose enthalten, sind unter anaeroben Bedingungen nur schwer abbaubar und werden daher nicht eingesetzt. Verschiedene Arten von Mikroorganismen nutzen die komplex zusammengesetzte Biomasse (vor allem Kohlenhydrate, Fette und Proteine) als Nährstoff- und Energielieferanten. Anders als beim aeroben Abbau (Atmung) können die Organismen bei der Vergärung nur einen geringen Teil der enthaltenen Energie erschließen. Sie müssen daher relativ große Mengen umsetzen, um ihren Energiebedarf decken zu können. Hauptprodukte des Abbaus sind das energiereiche Methan (CH4) und Kohlendioxid (CO2). Da sie gasförmig sind, trennen sie sich vom Gärsubstrat und bilden die Hauptkomponente des Biogases. CO2 ist nicht weiter oxidierbar, kann aber zusammen mit dem energiereichen CH4 in geeigneten BHKWs der Verbrennung zugeführt werden.

Substrate zur Biogaserzeugung

Hauptartikel: Substrat (Biogasanlage)

Der zur Biogaserzeugung eingesetzte Rohstoff wird meistens als Substrat bezeichnet. Theoretisch eignet sich jede Art von Biomasse, die unter anaeroben Bedingungen (Vergärung) abgebaut wird. Bedingt durch die jeweilige chemische Zusammensetzung (Kohlenhydrate, Fette, Proteine, etc.) ergeben sich pro eingesetzter Masse unterschiedliche Mengen Biogas mit verschiedenen Methananteilen. Dies erklärt teilweise die in der Tabelle gezeigten unterschiedlichen Methangehalte beim Einsatz unterschiedlicher Substrate. Bei der Tabelle ist zu beachten, dass sich die Ausbeute auf eine Tonne Frischmasse bezieht. Werden Pflanzen zur Verwendung als Substrat angebaut, so ist der erwartete Ertrag an Frischmasse pro Hektar einzubeziehen. In der Praxis entscheiden die Einkaufs- und Anbaukosten, die durch das Erneuerbare-Energien-Gesetz (EEG) festgelegten Vergütungen und Boni und die Eignung der Biogasanlage über das verwendete Substrat.

Zur groben Abschätzung der Nutzung für die Leistungserzeugung bei durchschnittlichem Wirkungsgrad gilt:

  • ha Mais entspricht ca. 2 kW elektr. Dauerleistung
  • 1 ha sonstiges Getreide entspricht ca. 1,5 kW
  • 1 ha Gras entspricht ca. 1 kW
  • Gülle von 1 Kuh entspricht ca. 0,15 kW

Mikrobielle Prozesse

Der anaerobe Abbau von Biomasse ist Grundlage der Entstehung von Faulgasen wie Deponie-, Klär-, Sumpf- und Biogas. Viele verschiedene Arten von Mikroorganismen sind beteiligt. Vorkommen und Mengenanteile der Arten sind von der Art des Substrats, dem pH-Wert, der Temperatur und dem Ablauf der Vergärung abhängig. Aufgrund der vielfältigen Stoffwechselfähigkeiten dieser Mikroorganismengemeinschaft können fast alle organischen Stoffe abgebaut werden. Lediglich faserartige Anteile aus Cellulose und verholzte Anteile aus Lignocellulose sind enzymatisch schwer abbaubar. Voraussetzung für die Methanbildung ist ein ausreichender Wasseranteil im Gärsubstrat.

Der Abbauprozess wird häufig schematisch als vier aufeinander folgende biochemische Einzelprozesse dargestellt. Bei den meisten gängigen Anlagenkonzepten findet laufend eine Substratzufuhr zum Fermenter statt, so dass die vier Einzelprozesse parallel stattfinden.

Datei:Biogasentstehung.svg
Biogasprozess schematisch

Hydrolyse

Mikroorganismen können die polymeren Makromoleküle ( z. B. Kohlenhydrate, Proteine) nicht direkt in die Zelle aufnehmen. Daher werden zunächst verschiedene Arten von Exoenzymen, wie Amylasen, Proteasen und Lipasen ausgeschieden. Diese hydrolysieren die Makromoleküle in ihre löslichen Oligomere und Monomere. Kohlenhydrate wie Stärke und Hemicellulose werden so in Oligo- und Monosaccharide (Mehrfach- und Einfachzucker) zerlegt. Proteine werden zu Peptiden oder Aminosäuren abgebaut. Fette können in ihre Bestandteile, wie beispielsweise Fettsäuren und Glycerin, hydrolisiert werden.

Acidogenese

Die Bruchstücke aus der Hydrolyse der Makromoleküle werden durch Transportproteine in die Mikroorganismen aufgenommen. In den Zellen finden Gärungs- und andere Abbauvorgänge statt. Die Produkte der Acidogenese sind niedere Fett- und andere Carbonsäuren, wie Valerian-, Butter-, Propion- und Essigsäure, Alkohole wie Ethanol sowie Kohlendioxid (CO2), Wasserstoff (H2) und als ein Abbauprodukt der Proteine Schwefelwasserstoff (H2S) und Ammoniak (NH3).

Acetogenese

Während der Acetogenese werden die niederen Fett- und Carbonsäuren sowie die niederen Alkohole durch acetogene Mikroorganismen zu Essigsäure (Acetat) umgesetzt.

Methanogenese

In der letzten, obligat anaerob ablaufenden Phase – der Methanogenese – wird die Essigsäure durch entsprechend acetoklastische Methanbildner nach Gleichung 1 in Methan umgewandelt. Etwa 30 % des Methans entstehen nach Gleichung 2 aus Wasserstoff und CO2.

Gleichung 1:   
Gleichung 2:   

Die vier Schritte lassen sich nicht strikt trennen, da beispielsweise auch schon in der Acidogenese Essigsäure, Wasserstoff und Methan entstehen. Die Methanogenese hingegen erfordert spezielle Stoffwechselfähigkeiten, die sich nur bei den Methanogenen finden. Diese Mikroorganismen gehören zur Gruppe der Archaeen und sind nur entfernt mit den Bakterien verwandt, die die anderen Schritte des Abbaus durchführen.

Verbleib des Substrats

Ein Teil des Substrats dient den Mikroorganismen als Nährstoff zum Aufbau von Zellmasse zur Zellteilung (Anabolismus). Die dafür benötigte Energie wird aus der Vergärung des Substrats gewonnen. Da der Energiegewinn, verglichen mit der aeroben stattfindenden Atmung, gering ist, müssen pro erzeugter Zellmasse vergleichsweise große Massen Substrat umgesetzt werden.

Bei gut abbaubaren Substraten wird ein großer Teil der Trockensubstanz in das Biogas umgesetzt. Daher bleibt ein wässriges Gemisch aus schwer abbaubarem organischem Material, wie Lignin und Cellulose, sowie aus anorganischen Stoffen wie zum Beispiel Sand oder anderen mineralischen Stoffen, der sogenannte Gärrest zurück. Dieser wird meistens als landwirtschaftlicher Dünger verwendet werden, da er noch sämtliche im Substrat enthaltenen Spurenelemente, fast den gesamten Stickstoff, Phosphor und - abhängig von der Verfahrensart der Biogasanlage - auch fast den gesamten Schwefel enthält.

Funktionsweise und Betrieb

Datei:Gaersubstrat.jpg
Hier entsteht Biogas: Oberfläche des Gärsubstrats im Pfropfenstrom-Fermenter einer Biogasanlage.

Verschiedene z. T. recht unterschiedliche Anlagenkonzepte werden in der Praxis angewendet. Vor allem die Zusammensetzung und Konsistenz des Substrats entscheiden, welches Konzept angewandt wird. Aber auch rechtliche Vorgaben durch das Erneuerbare-Energien-Gesetz, die die Vergütung für den eingespeisten Strom bestimmen, sind relevant. Ebenso können Vorschriften zur Hygienisierung und zur Vermeidung von Emissionen die Planung einer Biogasanlage beeinflussen.

Batch- und kontinuierliche Vergärung

Die meisten Anlagen werden mit einer kontinuierlichen Vergärung betrieben, bei der dem Prozess laufend Substrat zugeführt wird und Biogas sowie Gärrest entnommen werden. Vorteilhaft sind die Automatisierbarkeit und die relativ gleichmäßige Gasproduktion, so dass nachfolgende Komponenten wie Gasreinigung, Blockheizkraftwerk (BHKW) und Gasaufbereitung ebenfalls kontinuierlich arbeiten. Neben der Nassvergärung (auch Nassfermentation) kann auch die Trockenvergärung (auch Trockenfermentation) einen kontinuierlichen Anlagenbetrieb erlauben. Wenn der Gehalt an Trockenmasse aber sehr hoch oder das Substrat sehr faserig ist, beispielsweise bei Biomüll, Hausmüll und Grünschnitt, wird häufig die Batch-Vergärung angewandt. Hierbei wird für jede Substratcharge die Biogaserzeugung abgeschlossen und der Fermenter entleert, bevor die nächste Charge eingebracht wird. Durch Staffelung mehrerer Fermenter wird auch hier eine quasi-kontinuierliche Gasproduktion möglich.

Nass- und Trockenfermentation

Ein weiteres Unterscheidungsmerkmal bei Biogasanlagen ist die Betriebsweise als Nass- oder Trockenfermentation oder -vergärung. Bei der Nassfermentation macht ein hoher Wasseranteil das Substrat rühr- und fließfähig und wird während der Fermentation durchmischt. Die Trockenfermentation erfolgt mit stapelbarer organischer Biomasse.[3] Die Verfahrenswahl hängt im Wesentlichen von den Substraten ab.

Unter anderem für Gülle kommt nur die Nassvergärung in Frage, während langer Grassschnitt oft die für die Nassvergärung nötigen Rührwerke blockiert. Gehäckselter Mais kann mit beiden Verfahren verarbeitet werden – wird er als alleiniges Substrat verwendet, muss Wasser zugegeben werden. In Deutschland ist die Nassvergärung vorherrschend, weil die meisten Anlagen von Landwirten mit Viehzucht errichtet wurden, die häufig sowohl Energiepflanzen als auch Gülle einsetzen.

Domäne der Trockenfermentation ist der Grünschnitt, wie er im Garten- und Landschaftsbau anfällt sowie die Vergärung von Wiesen- oder Ackergras. Trockenfermentation wird auch als Ergänzung oder Ersatz zur Kompostierung eingesetzt. Anders als die Bezeichnung "Trockenvergärung" vermuten lässt, sind auch stark wasserhaltige Substrate wie Silage zur Trockenvergärung geeignet. Seit 2004 wurde im Rahmen des Erneuerbare-Energien-Gesetzes (EEG) ein Technologiebonus von 2 Cent/kWh eingespeisten Strom für die Trockenfermentation bezahlt. In den folgenden Jahren nahm daher auch in der Landwirtschaft die Bedeutung der Trockenfermentation stark zu. Für neu errichtete Anlagen ab 2009 entfällt der Technologiebonus, da das Verfahren inzwischen als etablierte Technik gilt.


MAX HALTS MAUL MAN :D:D:D HHAHA ICH GEB DIR GLEICH SONE SCHEISSE UEBER MICH LABERN ICH BOX DICH UM MUHAAAAAAAAAAAAAAAAA DU ARSCHGESICHT UND DENK DRAN DU DARFS NICHT JA ODER NEIN SAGEN !!!!!!!!

Ein- und mehrstufige Anlagen

Die einzelnen Schritte des mikrobiellen Abbaus haben bestimmte Optima. So läuft die Hydrolyse optimal bei einem niedrigen, leicht sauren pH-Wert, weshalb bei vielen Anlagen eine Hydrolysestufe mit nachgeschalteter Methanstufe vorhanden ist. Die Methanogenese läuft bevorzugt in leicht alkalischem Milieu ab. Häufig findet sich aber auch nur ein oder mehrere parallel geschaltete Fermenter ohne Trennung der Abbaustufen. In der Regel ist noch ein Lagerbehälter nachgeschaltet, der luftdicht abgeschlossen ist und daher als Nachgärer fungiert.

Anlagenbetrieb

Über das genaue Zusammenspiel der Mikroorganismen ist nur wenig bekannt. Daher ist es schwierig, die verschiedenen Parameter (Substratart, Substratmenge, Temperatur, Rührwerkseinstellungen, etc.) optimal einzustellen. Viele Maßnahmen beruhen auf Erfahrungen. In Forschungsprojekten werden Charakterisierungen der mikrobiologischen Populationen bzw. Gemeinschaften vorgenommen, um Zusammenhänge besser zu verstehen.

Zur Aufrechterhaltung des Fermentationsprozesses bei der Nassvergärung wird bei niedrigen Substratkonzentrationen ein nicht unerheblicher Teil der Abwärme aus der Biogasverstromung zur Aufrechterhaltung der Fermentertemperatur benötigt. Anlagen mit Trockenfermentation benötigen einen deutlich geringeren Anteil der produzierten Wärme. Für den Gesamtwirkungsgrad und die Wirtschaftlichkeit einer Biogasanlage ist die optimale Nutzung der Abwärme (Gebäudeheizung, Holz- und Getreidetrockung, etc.) ein wichtiger Faktor.

Verwendung der Produkte

Biogas

Container-BHKW einer Biogasanlage. Über "Notkühler" (Ventilatoren) auf dem Dach wird die ungenutzte Wärme an die Umgebung abgegeben.
Hauptartikel: Biogas

Derzeit (2009) wird Biogas hauptsächlich direkt an der Biogasanlage zur dezentralen gekoppelten Strom- und Wärmeerzeugung in Blockheizkraftwerken (BHKWs) genutzt (Kraft-Wärme-Kopplung). Dazu wird das Gasgemisch getrocknet, entschwefelt und dann einem Verbrennungsmotor zugeführt, der einen Generator antreibt. Der so produzierte Strom wird in das Netz eingespeist. Die in Abgas und Motorkühlwasser enthaltene Wärme wird in Wärmeübertragern zurückgewonnen. Ein Teil der Wärme wird benötigt, um die Fermenter zu beheizen, da die Mikroorganismen, welche die Biomasse abbauen, am besten bei Temperaturen von entweder 37 (mesophil) oder 55 °C (thermophil) wachsen. Überschüssige Wärme des Motors kann beispielsweise zur Beheizung von Gebäuden, zum Trocknen der Ernte (Getreide) oder den Betrieb von Aquakulturanlagen verwendet werden. Besonders wirtschaftlich und energieeffizient arbeitet die Anlage, wenn die überschüssige Wärme ganzjährig genutzt oder verkauft werden kann.

Biomethan

Hauptartikel: Biomethan

In mehreren Projekten wird das Biogas inzwischen in Aufbereitungsanlagen gereinigt und als Biomethan (Bioerdgas) in das Erdgasnetz eingespeist. Damit kann die Wirtschaftlichkeit von Biogasanlagen an Standorten ohne Wärmeabnehmer verbessert werden. Das Bioerdgas kann beispielsweise in BHKWs verstromt werden, die direkt bei kontinuierlichen Wärmeabnehmern, wie z. B. Schwimmhallen, errichtet werden. Dadurch ist die Abwärme fast vollständig absetzbar. Aufbereitetes Biogas kann ebenso als Treibstoff für erdgasbetriebene Fahrzeuge eingesetzt werden.

Gärrest

Hauptartikel: Gärrest

Die Gärrückstände werden als landwirtschaftliche Düngemittel verwendet. Sie sind chemisch weit weniger aggressiv als Rohgülle, die Stickstoffverfügbarkeit ist besser und der Geruch weniger intensiv. Der Gärrest der Nassfermentation ("Biogasgülle") ist eine gülleähnliche Substanz. Bei der Trockenfermentation entsteht Kompost, der ungefähr die Hälfte der Ausgangsmenge ausmacht.

Entwicklung in Deutschland

Der Anbau Nachwachsender Rohstoffe zur Biogasnutzung in Deutschland ist von 400.000 ha im Jahr 2007 auf 500.000 ha im Jahr 2008 gestiegen.

Auch die Zahl der Anlagen sowie der installierten elektrischen Leistung ist in den vergangenen Jahren stark gestiegen. Ein vergleichsweise hoher Anstieg lässt sich mit der seit 2004 gültigen ersten Novelle des Erneuerbare-Energien-Gesetz (EEG) ausmachen. Betrug die Zahl der Anlagen im Jahr 2004 vor der Novelle noch 2010, so waren es 2005 schon 2690 Anlagen in Deutschland. Im Jahr 2007 ist diese Zahl auf 3711 weiter gestiegen. Diese Entwicklung lässt sich durch die Erhöhung der Vergütung der durch Biogasanlagen erzeugten kWh erklären. Die elektrische Leistung stieg von 247 MW im Jahr 2004 über 665 MW 2005 bis auf 1270 MW 2007. Da die Leistung neu installierter Anlagen zunimmt, steigt die Gesamtleistung schneller als die Anzahl der Anlagen. Weil viele Biogasanlagen einen großen Anteil der Abwärme ungenutzt an die Umwelt abgeben, besteht hier noch weiteres Potential, z.B. durch den Aufbau von Nahwärmenetzen oder die Aufbereitung zu Biomethan.[4] Mit der seit 2009 gültigen Novelle des EEG wurde ein Güllebonus eingeführt, der kleinere Anlagen mit hohem Gülleanteil fördern soll.

Vergütung in Deutschland

In Deutschland wird das Einspeisen von regenerativ erzeugtem Strom in das Stromnetz durch das Erneuerbare-Energien-Gesetz geregelt. Die Betreiber der Übertragungsnetze müssen den erzeugten Strom aus dem BHKW zu definierten Preisen abnehmen, können diese Kosten aber an den Endkunden weiterreichen. Zwischen den Übertragungsnetzbetreibern findet ein Ausgleich der Mehrkosten für die Pflichtabnahme des Stroms statt, so dass die Mehrbelastung des Endkunden bundesweit gleich ist. Die Vergütungshöhe gemäß EEG-Novelle 2009 ist in der unten stehenden Tabelle vereinfacht aufgeführt.[5] Wenn das Biogas nur thermisch verwertet wird, erhält der Biogasanlagenbetreiber keine EEG-Vergütung. Für Deponie- und Klärgas sind im EEG eigene Mindestvergütungssätze und Boni festgelegt.

€-ct/kWhel Grundvergütung (2009) NaWaRo-Bonus KWK-Bonus Technologiebonus Güllebonus Formaldehydbonus
bis 150 kWel 11,67 7 3 bis 2 4 1
bis 500 kWel 9,18 7 3 bis 2 1 1
bis 5 MWel 8,25 4 3 bis 2 0 0
bis 20 MWel 7,79 0 3 0 0 0

Die Vergütungshöhe ist für 20 Jahre garantiert. Ein Inflationsausgleich findet nicht statt. Für Neuanlagen gilt eine Degression der Vergütung von 1 % pro Jahr. Für eine Anlage, die 2009 in Betrieb genommen wurde, gelten also für 20 Jahre die Vergütungssätze nach EEG 2009. Eine Anlage, die 2010 in Betrieb genommen wird, bekommt für 20 Jahre 99 % dieser Sätze usw.

Der Nawaro-Bonus wird gewährt, wenn in der Biogasanlage nur Pflanzen oder pflanzliche Bestandteile verwendet werden, die in der Landwirtschaft, Forstwirtschaft, im Gartenbau oder in der Landschaftspflege anfallen und keinen anderen Zweck als die Verwertung in der Biogasanlage haben. Darüber hinaus darf auch Gülle in einer Nawaro-Anlage verwendet werden. Bei mindestens 30 % Gülleanteil am Substrat wird zudem ein Güllebonus gewährt, der bei Anlagen bis 150 kWel 4 Cent, bei Anlagen bis 500 kWel 1 Cent/ kWhel beträgt.

Die Höhe des KWK-Bonus ist, je nach Anlagenkonzept, variabel. Er hängt zum einen von der Stromkennzahl (SKZ) ab, die sich durch Division des elektrischen durch den thermischen Wirkungsgrad des Blockheizkraftwerkes berechnet. Durch Multiplikation von SKZ und der Menge (kWhth) der tatsächlich und sinnvoll genutzten BHKW-Abwärme ergibt sich die Strommenge (kWhel), für die der Bonus tatsächlich gewährt wird. Ein hoher elektrischer Wirkungsgrad und eine große Menge tatsächlich genutzter Wärme sorgen also für einen hohen Bonus. Förderwürdige Wärmenutzungskonzepte sind durch das EEG 2009 definiert.

Der Technologiebonus wird bei Verwendung von neuartigen Technologien in der Biogasanlage gewährt, sofern eine Wärmenutzung stattfindet oder bestimmte elektrische Wirkungsgrade erreicht werden. Diese können z. B. die Verwendung eines Stirlingmotors, einer ORC-Turbine, eines Kalina-Prozesses, einer Brennstoffzelle oder einer Gasturbine sein. Zudem gilt der Bonus bei Aufbereitung des Biogases auf Erdgasqualität zur Einspeisung in das Gasnetz, sowie bei bestimmten Verfahren zur Vergärung von Bioabfällen.

Bei Anlagen bis 500 kWel wird ein Formaldehyd-Bonus von 1 Cent/ kWh gewährt, wenn bestimmte Grenzwerte eingehalten werden.

Wesentliche Neuerungen gegenüber dem EEG 2004 sind die Abschaffung des Technologiebonus für Trockenfermentation, die Erhöhung der Grundvergütung von Kleinanlagen und des Nawaro-Bonus, die Einführung eines Gülle- und Formaldehydbonus und die Förderung der Gaseinspeisung sowie zahlreiche Detailregelungen.

Sicherheit

Da in Biogasanlagen große Mengen brennbarer Gase erzeugt und verarbeitet werden, ist die Betriebssicherheit von großer Bedeutung. Bei falscher Bedienung der Biogasanlage, bei Konstruktionsfehlern und Materialschäden besteht die Möglichkeit einer Verpuffung bzw. Explosion, wie u.a. bei drei Unfällen in Biogasanlagen im Jahr 2007 deutlich wurde (in Riedlingen, Walzbachtal und Deiderode)[6]. Folgenschwer können damit verbundene Umweltschäden sein, vor allem durch Eintrag von Gärsubstraten oder Gärrest in Gewässer, wie es bei Biogasunfällen in Barßel und in Bassum der Fall war[7]. In Einzelfällen können auch Schadgase in erheblichem Umfang emittiert werden, z.B. Schwefelwasserstoff bei einem Unfall in Zeven im Jahr 2005, bei dem vier Menschen starben[8].

Vor- und Nachteile

Biogasanlagen sind neben Wasserkraftwerken, Solaranlagen, Biomasseheiz(-kraft-)werken und Windkraftanlagen wichtige Erzeuger von Strom und Wärme aus erneuerbaren Energien. Je nach Substrattyp und Anlagenbauweise haben Biogasanlagen Vor- und Nachteile:

Vorteile

  • Nutzung von erneuerbaren, nachwachsenden, örtlich verfügbaren Rohstoffen
  • Verwendung bisher ungenutzter Pflanzen und Pflanzenteile (Zwischenfrüchte, Pflanzenreste, etc.)
  • Hohe Energieausbeute pro Anbaufläche im Vergleich mit anderen Bioenergien (Biodiesel, BtL)
  • CO2-Ausstoß ist fast neutral, allerdings muss man den Anbau- und Erntevorgang, Düngung, etc. mit berücksichtigen
  • Dezentrale Stromerzeugung kann Transportstrecke zum Endverbraucher verringern
  • Durch kontinuierliche Stromerzeugung grundlastfähig, könnte alternativ aber auch Regelenergie bereitstellen, somit gute Ergänzung zu Strom aus Windkraft- und Solaranlagen
  • Verbesserte Düngerqualität des Gärrests im Vergleich zu Rohgülle:
- verringerte Geruchsintensität und Ätzwirkung bei der Ausbringung
- die Pflanzen können den Nährstoffgehalt besser und schneller ausnutzen
  • Vergärung von Gülle reduziert oder verhindert die sonst bei der Lagerung stattfindenden Methan- und Geruchsemissionen
  • Gereinigtes Methan kann als Treibstoff für umgerüstete Kraftfahrzeuge verwendet werden.

Nachteile

Biogasanlage mit 240 Kilowatt Leistung auf einem Bauernhof in Niederbrechen, Hessen, Baujahr 2004
  • Der Anbau von Energiepflanzen, insbesondere die Ausweitung des Maisanbaus (Energiemais), kann ökologische Probleme nach sich ziehen (Monokulturen, intensive Landwirtschaft, Boden- und Grundwasserbelastung, Artenrückgang). Erfahrungsgemäß werden für eine 500 Kilowattanlage etwa 300 ha Anbaufläche für Silomais benötigt.
  • Kritisiert wird die durch Biogasanlagen forcierte Flächenkonkurrenz zwischen Nahrungsmittel- und Energiepflanzenerzeugung. Nach einem starken Anstieg Anfang 2007 sind die Getreidepreise jedoch wieder stark gefallen (Stand 2009).
  • In der Biogasanlage entstehende Gase können bei unsachgemäßem Umgang zur Explosion, Erstickung oder Vergiftung führen. Proteinreiche Substrate können zu relativ hohen Anteilen des hochgiftigen Schwefelwasserstoff im Biogas führen. Entsprechende Sicherheitsvorschriften sind einzuhalten.
  • Methan hat pro Masse einen 25-fach höheren Treibhauseffekt als Kohlendioxid. Daher ist die Gasdichtigkeit der Anlage ein wichtiger Faktor bei der Bewertung der Treibhausgasemissionen.

Weitere Eigenschaften

  • Für die Ausbringung des Gärrests müssen genügend Flächen zur Verfügung stehen. Jedoch sind die Flächen für den Substratanbau hierfür meist ausreichend.
  • In den Wintermonaten darf keine Gülle und kein Gärrest ausgebracht werden. Während dieser Zeit muss der Gärrest – ebenso wie unvergorene Gülle aus der Tierhaltung – gelagert werden. Entsprechende Lagerkapazitäten sind nachzuweisen und werden daher in der Regel bereits beim Bau einer Biogasanlage eingerichtet.
  • Es muss verhindert werden, dass Gülle von Tieren, die mit Antibiotika behandelt worden sind, in zu hoher Konzentration in den Faulbehälter gelangt.

Literatur

  • Fachagentur Nachwachsende Rohstoffe e. V. (FNR): Handreichung Biogasgewinnung und -nutzung, ISBN 3-00-014333-5 (pdf)
Umfassendes, aktuelles 233-Seiten Literaturwerk zum Thema Biogas und (landwirtschaftliche) Biogasanlagen. Die Handreichung kann kostenlos von der FNR bezogen werden.
  • Bayerisches Staatsministerium für Umwelt, Gesundheit und Verbraucherschutz (StMUGV): Biogas Handbuch Bayern. München, 15. November 2004.
Die kostenlose Broschüre (50 Seiten) enthält Grundlagen und Techniken zur Biogasgewinnung sowie Informationen zu Genehmigungsverfahren. Kurzfassung Langfassung
  • B. Eder, H. Schulz: Biogas Praxis. Grundlagen, Planung, Anlagebau, Beispiele und Wirtschaftlichkeit von Biogasanlagen ökobuch Verlag Staufen 2006, 3. Auflage, ISBN 978-3-936896-13-8
  • M. Madigan, J. Martinko, J. Parker: Brock - Mikrobiologie, Spektrum Akademischer Verlag Heidelberg, deutsche Übersetzung, Berlin 2001, ISBN 978-3-8274-0566-1

Einzelnachweise

  1. Fachagentur Nachwachsende Rohstoffe e. V. (FNR): Biogas Basisdaten Deutschland. (PDF; Stand: Oktober 2008). Quelle für alle Angaben außer für Pressschnitzel.
  2. Biogasausbeuten verschiedener Substrate, Sparte Kartoffeln/Rüben lfl.bayern.de, siehe Pressschnitzel siliert.
  3. zur Trockenfermentation: http://www.galabauenergy.de/Biogasanlage.aspx
  4. Fachverband Biogas: Monitoring zur Wirkung des EEG auf die Entwicklung der Stromerzeugung aus Biomasse (BMU, 2007) Fachverband Biogas (2007)
  5. - Erneuerbare-Energien-Gesetz (EEG 2009), verfügbar bei juris.de
  6. Spiegel online: Biogasanlage explodiert, 16. Dezember 2007;Schwäbische Zeitung: Havarie in der Biogasanlage: Gutachten macht Betreibern Hoffnung, 26. August 2008
  7. NWZ online: Schweißfunken entfachen Feuer 23. September 2008
  8. NWZ online: Biogas erhitzt die Gemüter, 24. September 2008

Siehe auch

Vorlage:Link GA