Benzophenonoxim

Strukturformel
Strukturformel von Benzophenonoxim
Allgemeines
Name Benzophenonoxim
Andere Namen

N-Hydroxy-1,1-diphenylmethanimin

Summenformel C13H11NO
Kurzbeschreibung

weißer Feststoff[1]

Externe Identifikatoren/Datenbanken
CAS-Nummer 574-66-3
EG-Nummer 209-373-6
ECHA-InfoCard 100.008.522
PubChem 11324
ChemSpider 10847
Wikidata Q27254600
Eigenschaften
Molare Masse 197,23 g·mol−1
Aggregatzustand

fest[1]

Schmelzpunkt

146 °C[2]

Löslichkeit

praktisch unlöslich in Wasser[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung[1]
Gefahrensymbol Gefahrensymbol

Gefahr

H- und P-Sätze H: 302​‐​318
P: 301+330+331​‐​280​‐​305+351+338​‐​310[1]
Toxikologische Daten

1900 mg·kg−1 (LD50Ratteoral)[1]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet.
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa).

Benzophenonoxim ist eine organische Verbindung aus der Gruppe der Oxime. Es leitet sich von Benzophenon ab.

Herstellung

Benzophenonoxim kann aus Benzophenon und Hydroxylaminhydrochlorid in Gegenwart von Natriumhydroxid hergestellt werden.[3] Die Reaktion unterliegt einem Gleichgewicht, nur bei höherem pH-Wert entsteht bevorzugt das Oxim. Im Sauren wird die Verbindung dagegen leicht wieder hydrolysiert.[4]

Eigenschaften

Benzophenonoxim kristallisiert im monoklinen Kristallsystem mit den Gitterparametern a = 9,459 Å; b = 8,383 Å, c = 26,690 Å und β = 92,807 °.[2]

Reaktionen

Benzophenonoxim eignet sich als Reagenz zur Herstellung von Alkylchloriden aus Carbonsäuren. Die Carbonsäuren werden zunächst zum Oxim-Ester umgesetzt und dann bestrahlt. In einer radikalischen Reaktion wird die N-O-Bindung homolytisch gespalten und dann Kohlenstoffdioxid freigesetzt. Das Chloratom stammt aus dem Lösungsmittel Tetrachlormethan.[5] Durch Reaktion mit Carbonsäurechloriden (beispielsweise Benzoylchlorid) in Gegenwart von Pyridin können aus Benzophenonoxim Oxim-Ester hergestellt werden. Durch Deprotonierung mit Natriumhydrid und Umsetzung mit Alkylchloriden können Oxim-Ether hergestellt werden.[6] Durch Reaktion mit Singulett-Sauerstoff führt zur Oxidation, die Benzophenon und salpetrige Säure als Produkte ergibt.[7]

Einzelnachweise

  1. a b c d e f Datenblatt Benzophenone oxime, 98% bei Fisher Scientific, abgerufen am 11. Juni 2024 (PDF).
  2. a b M. Rajasekar, K. Muthu, V. Meenatchi, G. Bhagavannarayana, C.K. Mahadevan, Sp. Meenakshisundaram: Growth, crystalline perfection and characterization of benzophenone oxime crystal. In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Band 92, Juni 2012, S. 207–211, doi:10.1016/j.saa.2012.02.070.
  3. Arthur Israel Vogel: A text-book of practical organic chemistry: incl. qualitative organic analysis. 3. ed. ; new impr. Longmans, London 1977, ISBN 978-0-582-44245-0, S. 741.
  4. Arthur Lachman: THE BECKMANN REARRANGEMENT. II. In: Journal of the American Chemical Society. Band 47, Nr. 1, Januar 1925, S. 260–265, doi:10.1021/ja01678a038.
  5. Masato Hasebe, Takashi Tsuchiya: Photodecarboxylative chlorination of carboxylic acids via their benzophenone oxime esters. In: Tetrahedron Letters. Band 29, Nr. 48, Januar 1988, S. 6287–6290, doi:10.1016/S0040-4039(00)82327-8.
  6. Billy B. Wylie, Eugene I. Isaacson, Jaime N. Delgado: Synthesis of Oxime Esters and Ethers as Potential Psychotropic Agents. In: Journal of Pharmaceutical Sciences. Band 54, Nr. 9, September 1965, S. 1373–1376, doi:10.1002/jps.2600540932.
  7. Carl C. Wamser, John W. Herring: Photooxidation of benzophenone oxime and derivatives. In: The Journal of Organic Chemistry. Band 41, Nr. 8, April 1976, S. 1476–1477, doi:10.1021/jo00870a045.